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Let A be an m× n integral matrix with full row rank and b an m× 1

integral vector.

LP: min {cT x : Ax = b, x ≥ 0}

IP: min {cT x : Ax = b, x ∈ Zn
+}

• Fundamental Theory of LP.

• Basic solution: x = (xB, xN ) = (B−1b, 0)
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Observation: If the optimal basis B∗ has det B∗ = ±1, the optimal

basic solution x∗ = (B∗)−1b is integral.

Why? Cramer’s rule. B−1 = Bα

det B

Question: Under what conditions do all bases satisfy det(B) = ±1?
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Definition: A square integral matrix B is unimodular(UM) if

det B = ±1.

Definition: An integral matrix A is totally unimodular(TUM) if every

square nonsingular submatrix of A is UM.

Observation: If A is TUM, then aij ∈ {−1, 0, 1}.
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Proposition: Let A be a TUM matrix. Multiplying any row or column of

A by −1 results in a TUM matrix.

Proposition: Let A be a TUM matrix. Then the following matrices are

all TUM:

−A, AT , [A, I], [A,−A].
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Definition: A polyhedron is integral if every extreme point is integral.

Proposition: Let A be an m× n integral TUM matrix. the following

polyhedrons are all integral for any vectors b and u of integers:

{x ∈ Rn : Ax ≤ b}

{x ∈ Rn : Ax ≥ b}

{x ∈ Rn : Ax ≤ b, x ≥ 0}

{x ∈ Rn : Ax = b, x ≥ 0}

{x ∈ Rn : Ax = b, 0 ≤ x ≤ u}
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Theorem: If A is an m× n integral matrix with full row rank, the

following are equivalent:

• Every basis B is UM, i.e., det B = ±1.

• The extreme points of {x ∈ Rn : Ax = b, x ≥ 0} are integral for all

integral vectors b.

• Every basis has an integral inverse.
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Corollary: If A is an m×n integral matrix, the following are equivalent:

• A is TUM.

• The extreme points of {x ∈ Rn : Ax ≤ b, x ≥ 0} are integral for all

integral vectors b.

• Every nonsingular submatrix of A has an integral inverse.

√
Hoffman and Kruskal (1956)

√
Veinott and Dantzig (1968): a short proof.
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• A linear programming problem with a totally unimodular coefficient

matrix yields an optimal solution in integers for any objective vector

and any integer vector on the right-hand side of the constraints.

• There are non-unimodular problems which yield integral optimal

solutions for any objective vector but only certain integer constraint

vectors. (Chapter 6–8, Eugene Lawler’s Book)

• There are non-unimodular problems which yield integral optimal

solutions for any integer constraint vector but only certain objective

vectors. (Page 165–168, Eugene Lawler’s Book)
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Question: Given a matrix A, how do we know it is totally unimodular or

not?

Matrices that are not TUM:

(
1 −1
1 1

)  1 1 0
0 1 1
1 0 1
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Matrices that are TUM:


1 −1 0 0 −1

−1 1 −1 0 0
0 −1 1 −1 0
0 0 −1 1 −1

−1 0 0 −1 1




0 1 0 0 0
0 1 1 1 1
1 0 1 1 1
1 0 0 1 0
1 0 0 0 0




1 −1 −1 0
−1 0 0 1

0 1 0 −1
0 0 1 0



S.-C., Fang NC State University 11 / 24



Totally Unimodular Matrices OR766

• There do not seem to be any easily tested necessary and sufficient

conditions for total unimodularity.

• There exist some characterization theorems for totally unimodular

matrices. (Ghouila-Houri (1962) and Camion (1965))

• There is also an easily tested set of sufficient (but not necessary)

conditions for total unimodularity.
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Camion’s Characterization

Definition: A matrix A is Eulerian if the sum of the elements in each

row and each column is even.

Theorem: A (0,+1,−1) matrix A is totally unimodular if and only if the

sum of the elements in each Eulerian square submatrix is a multiple of 4.

√
Camion (1963a,1963b,1965)
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Eulerian Matrices that are not TUM:

 1 0 −1
1 −1 0
0 1 1

  1 1 0
0 1 1
1 0 1
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Ghouila-Houri’s Characterization

Theorem: An m× n integral matrix A is totally unimodular if and only

if for each set R ⊆ {1, 2, · · · ,m} can be divided into two disjoint sets R1

and R2 such that

∑
i∈R1

aij −
∑
i∈R2

aij ∈ {−1, 0, 1}, j = 1, 2, · · · , n

√
Ghouila-Houri (1962), Berge (1973) and Commoner (1973)

√
Tamir (1976): a short proof based on Camion’s theorem.
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Theorem: A (0,+1,−1) matrix A is totally unimodular if both of the

following conditions are satisfied:

• Each column contains at most two nonzero elements.

• The rows of A can be partitioned into two sets A1 and A2 such that

two nonzero entries in a column are in the same set of rows if they

have different signs and in different sets of rows if they have the same

sign.

Corollary: A (0,+1,−1) matrix A is totally unimodular if it contains no

more than one +1 and no more than one −1 in each column.
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TUM matrices 
1 −1 −1 0

−1 0 0 1
0 1 0 −1
0 0 1 0




1 −1 0 0 −1
−1 1 −1 0 0

0 −1 1 −1 0
0 0 −1 1 −1

−1 0 0 −1 1
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Definition: A (0,+1) matrix A has the consecutive one’s property if for

any column j, aij = ai′j = 1 with i < i′ implies alj = 1 for i < l < i′.

Corollary: A matrix with the consecutive one’s property is TUM.


0 1 0 0 0
0 1 1 1 1
1 0 1 1 1
1 0 0 1 0
1 0 0 0 0
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Theorem: The node-arc incidence matrix of a directed graph is TUM.

Why? Exactly one 1 and one −1 in each column.

Integral Circulation Theorem: For the minimum cost circulation

problem, if all lower bounds and capacities are integers and there exists a

finite optimal circulation, then there exists an integral optimal circulation

(whether or not arc costs are integers).
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Minimum Cost Circulation Problems

min
∑

i,j aijxij

s.t.∑
j xji −

∑
i xij = 0, ∀ i,

0 ≤ lij ≤ xij ≤ cij , ∀ i, j.

Introducing the slack variables:

−xij + rij = −lij

xij + sij = cij
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Minimum Cost Circulation Problems

min aT x

s.t.

A(x, r, s) = b,

x, r, s ≥ 0.

A =

 G 0 0
−Im Im 0
Im 0 Im

 b =

 0
−l

c


where G is the arc-node incidence matrix of the network.
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Matching in Bipartite Graphs

Theorem: A graph is bipartite if and only if its node-edge incidence

matrix is totally unimodular.

√
Asratian et al. Bipartite Graphs and Their Applications, Cambridge

University Press, 1998. (Page 16, Theorem 2.3.1)

König-Egervary Theorem: Let G be a bipartite graph. The maximum

number of arcs in a matching is equal to the minimum number of nodes in

a covering of arcs by nodes.

Why? By LP duality.
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