
SUPPORT VECTOR MACHINES &

NEURAL NETWORKS

LECTURE 8 – ARTIFICIAL NEURAL NETWORKS

A. Basic structure of neural networks

- Neuron, activation function, perceptron, feedforward NN

B. Backpropagation and learning

- Loss/reward function, online vs. batch learning and algorithms

C. Multi-layer neural networks and deep learning

- Scale, feature and computation, ReLU and SGD

D. Radial basis function neural network (RBFN)

E. Convolutional neural network (CNN)

*Copyright: Professor Shu-Cherng Fang of NCSU-ISE

Artificial neural networks

• An artificial neural network (ANN or NN in short) is a

mathematical/computational model that mimics the

operations of human brains to create artificial intelligence

through some learning algorithms.

< tibco.com>

Recent advance in deep learning

• Deep learning for computer vision, image procession,

pattern recognition, approximate reasoning, etc.

https://encrypted-
tbn0.gstatic.com/images?q=tbn:ANd9GcRAqwxA0i0s2cvaWXxZRPV5Y53a4vOy
jtHURQ&usqp=CAU

Recent advance in deep neural network

• Deep learning for computer vision, image procession,

pattern recognition, approximate reasoning, etc.

Some of the key works in NN

• Alexander Bain (1873 – Mind and Body) and William

James (1890 – The Principles of Psychology) uncovered

preliminary theoretical bases of “thoughts and body

activities are from interactions of neurons (via electric

flows) in the brain”.

• Tested by C. S. Sherrington (1898) that led to the concept

of habituation.

• Warren McCulloch and Walter Pitts (1943) built the first

“threshold logic” computational model.

• The concept of NN (B-type unorganized machines) had

first been officially raised by Alan Turing in his 1948 paper.

Some of the key works

• F. Rosenblatt (1958) created the first “perceptron”/artificial

neuron. (Some called him “father of deep learning”).

• Paul Werbos (1974) PhD Dissertation at Harvard

pioneered the concept of “backpropagation”.

• J. J. Hopfield (1982) introduced one classical type of

artificial neural network called recurrent Hopfield network.

• D. E. Rumelhart and J. McClelland (1986) provided a full

exposition on the use of connectionism in computers to

simulate neural processes.

• G.E. Hinton, S. Osindero, and Y. Teh (2006) proposed a

fast learning algorithm for deep belief nets.

Mathematical foundation

• Key function: uncover a non-explicit input-output relation.

• Universal approximation: (From Wikipedia)

Key function: uncover nonlinear input-output relationship

• Basic model of an artificial neural network

data

relation/function

𝐲 = 𝑓(𝒙) = ?

method/algorithm

• Prediction? Classification?

• Patterns? Universal approximation?

Question

• Basic model of an artificial neural network

data

𝑅 𝒙, 𝒚 = ? Relationship

𝐲 = 𝑓(𝒙) = ? Function

Artificial Neural Networks (ANN)

Warren McCulloch and Walter Pitts’ work of 1943 ("A Logical Calculus
of Ideas Immanent in Nervous Activity". Bulletin of Mathematical
Biophysics. 5 (4): 115–133. doi:10.1007/BF02478259) opened the
subject by creating a computational model for neural networks.

Basic concepts of neural networks

• A brain is composed of some network of neurons.

• A typical neuron receives input – either excitation or inhibition –

from many other neurons.

• When its net excitation reaches a certain level, the neuron fires.

• The firing is propagated through a branching axon to many other

neurons, where it in turn acts as input to those neurons.

• A neuron always computes the same function.

• We learn because the strength of connections between neurons

changes.

• Because the strength of the connections between the neurons in

the network can change, the relationship of the network’s output

can change, the relationship of the network’s output to its input

can be altered by experience.

100 billions Neurons in Human Brain

https://www.google.com/url?sa=i&
url=https%3A%2F%2Fen.wikipedia.
org%2Fwiki%2FNeuron&psig=AOvV
aw3kTBhYiwfwoUOcFC5zmV1K&us
t=1637335749566000&source=ima
ges&cd=vfe&ved=2ahUKEwi5_Y6Pn
aL0AhVIo3IEHYLRBdgQr4kDegUIAR
CzAQ

Artificial neural networks

Neuron – the computational element

Artificial neural networks

Neuron – the computational element

output of neuron 𝑗: 𝑦𝑗 = 𝜙(𝒘𝑗
𝑇 𝒙 + 𝑏𝑗)

activation function 𝜙 ⋅ ∶ ℝ → ℝ

Feedforward perceptron

• Simplified – one output (from MIT 6.S191 introtodeeplearning.com)

𝑦 = 𝜙(𝒘𝑇𝒙 + 𝑏)

How much can a perceptron do?

• Data Connections and weights

How much can a perceptron do?

• Activation function Perceptron model

(Work like SVM?)

𝑠𝑖𝑔𝑛 𝑥 = ቊ
+1, if 𝑥 > 0
−1, if 𝑥 ≤ 0

𝑦 = 𝜙 𝒘𝑇𝒙 + 𝑏
= 𝑠𝑖𝑔𝑛 (0.3𝑥1 + 0.3𝑥2 + 0.3𝑥3 − 0.4)

Multi-output perceptron
• Simplified –multiple outputs (from MIT 6.S191introtodeeplearning.com)

𝑦𝑗 = 𝜙(𝒘𝑗
𝑇 𝒙 + 𝑏𝑗), 𝑗 = 1,2 Type equation here.

𝒚 = 𝑦1
𝑦2

=
𝜙(𝒘1

𝑇 𝒙+𝑏1)

𝜙(𝒘2
𝑇 𝒙+𝑏2)

≜ 𝚽(𝑾𝑇𝒙 + 𝒃)

Single hidden layer (shallow) perceptron NN
• Simplified (from MIT 6.S191introtodeeplearning.com)

𝑦𝑗 = 𝜙 𝒘𝑗
2

𝑇
𝚽 𝑾 1 𝑇

𝒙 + 𝒃 1 + 𝑏𝑗
2

, 𝑗 = 1,2

𝒚 = 𝚽 𝑾 2 𝑇
𝚽 𝑾 1 𝑇

𝒙 + 𝒃 1 + 𝒃 2

𝑧𝑖 = 𝑤0,𝑖
(1)

+෍

𝑗=1

𝑚

𝑥𝑗𝑤𝑗,𝑖
(1)

, ො𝑦𝑖 = 𝑔 𝑤0,𝑖
(2)

+෍

𝑗=1

𝑑1

𝑔(𝑧𝑗)𝑤𝑗,𝑖
(2)

How much can a shallow network do?

• Data 3/4

1/4

0 1/3 2/3 1

square wave

• Connections & weights

How much can a shallow network do?

Activation function shallow network model

hidden nodes

sigmoid function

output node

(work like an approximator?)

squared wave

Exercise

• Sigmoid function value table

• 𝑦1 = 𝑠𝑖𝑔 (100𝑥 − 30)

• 𝑦2 = 𝑠𝑖𝑔(−100𝑥 + 70)

• 𝑧 = 𝑠𝑖𝑔 (2.225𝑦1 + 2.225𝑦2 − 3.350)

0.3 0.7

Exercise

• Sigmoid function value table

• 𝑦1 = 𝑠𝑖𝑔 (100𝑥 − 30)

• 𝑦2 = 𝑠𝑖𝑔(−100𝑥 + 70)

• 𝑧 = 𝑠𝑖𝑔 (2.225𝑦1 + 2.225𝑦2 − 3.350)

0.3 0.7

0.75

0.25

0.33 0.66

Multi-layer (deep) perceptron NN

• Simplified (from MIT 6.S191introtodeeplearning.com)

How much can a deep network do?

• Identify a dog in a photo (Machine Learning Crash Course: Part 3 - ML@B Blog)

• Pixels line segments distinct features judgement

• convolution layer regular layer

Activation functions

• Objective: to fire a neuron

sh

vs.

bio-neuron possible-neuron?

• Issues:

- sharp vs. dull

- first order information (gradient information)

Activation functions

• Commonly used activation functions

• Pros and cons?

Fundamentals of multi-layer perceptron NN

• Feedforward with backpropagation

- for each neuron/node, activation function is fixed,

connection weights may change (learning)

- input information feeds forward for computing outputs

(in testing and in use)

- error/loss information propagates backward for adjusting

connection weights (in training)

• References:

Feed forward computations

• Example: 3-layer input-hidden-output shallow network

𝑦1

𝑦𝐽

𝑦𝑗

Feed forward computations

• Example: 3-layer input-hidden-output shallow network

𝒛 = 𝚽 𝐵𝑇𝚽 𝐴𝑇𝒙 + 𝒂0 + 𝒃0

ReLU leads to a piecewise linear approximator
• Hanin, Boris; Sellke, Mark (March 2019). "Approximating Continuous

Functions by ReLU Nets of Minimal Width". Mathematics. MDPI. 7 (10):

992. arXiv:1710.11278. doi:10.3390/math7100992.

𝒛 = 𝚽 𝐵𝑇𝚽 𝐴𝑇𝒙 + 𝒂0 + 𝒃0

𝜙 𝑣 = 𝑅𝑒𝐿𝑈 𝑣 = max{0, 𝑣} is a piecewise linear

function

⇒ 𝒛 is piecewise linear in 𝒙

⇒ NN using ReLU activation provides a

piecewise linear approximation of the underlying

input-output relation.

Good for large scale operations of deep networks!

https://doi.org/10.3390%2Fmath7100992
https://en.wikipedia.org/wiki/ArXiv_(identifier)
https://arxiv.org/abs/1710.11278
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.3390%2Fmath7100992

Backpropagation learning

• Example: 3-layer input-hidden-output shallow network

Mean squared error (2-norm) model

- Objective: to find the weights/coefficients {𝑎𝑖𝑗 , 𝑏𝑗𝑘}

that provides the best fit between the neural network

output 𝒛 and the target function value (𝒕).

Backpropagation learning

• Example: 3-layer input-hidden-output shallow network

• Model:

Delta learning rule – gradient decent method

• Objective: min𝐸(𝑎𝑖𝑗 , 𝑏𝑗𝑘) - quite complex

• Principle: adjust current weights along the negative

gradient direction of the error/loss function with a proper

step-length to reduce the error step by step.

Gradient decent direction in approximation

• Taylor expansion theorem

Approximation

Approximation

Gradient decent method
• Facts: For a differentiable function 𝑓 𝒙 :ℝ𝑛 → ℝ

1. Moving along the gradient direction 𝛻𝑓 𝒙 will increase

the objective value.

2. Moving along the negative gradient direction−𝛻𝑓 𝒙 will

decrease the objective value.

3. The gradient direction 𝛻𝑓 𝒙 is the steepest

ascent direction for moving.

4. The negative gradient direction −𝛻𝑓 𝒙 is the steepest

decent direction for moving.

5. Gradient decent method

𝒙𝑛𝑒𝑤 = 𝒙𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − 𝜃𝛻𝑓 𝒙𝑐𝑢𝑟𝑟𝑒𝑛𝑡
with a step-length 𝜃 > 0.

Calculate gradient direction using chain rule

• Chain rule for the composition of two differentiable

functions 𝑓 and 𝑔:

ℎ 𝑥 = 𝑓 𝑔 𝑥 ⇒ ℎ′ 𝑥 = 𝑓′ 𝑔 𝑥 𝑔′ 𝑥

• Expressed in Leibniz’s notation

𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦
⋅
𝑑𝑦

𝑑𝑥

• General form

𝑑𝑓1

𝑑𝑥
=

𝑑𝑓1

𝑑𝑓2

𝑑𝑓2

𝑑𝑓3
⋅⋅⋅

𝑑𝑓𝑛

𝑑𝑥

NN learning mechanisms
• Example: 3-layer input-hidden-output shallow network

• Online (example by example) learning

• (Whole) batch learning

• Stochastic (batch) learning

- randomly choose a small batch of examples

Online learning
• Example: 3-layer input-hidden-output shallow network

• Online (example by example) learning

• Gradient information (chain rule)

Still remember the chain rule?
• Hint:

Delta learning rule – gradient decent method

• Delta rule:

• Related Questions:

1. Will it converge to a local minimum?

2. How efficient?

3. How to choose the step-length?

ቐ
Online, 𝑁 = 1
Batch, 𝑁
Stochastic, < 𝑁.

Delta learning rule
Enhancement with memory:

Complexity of training
• Potential problems:

Sensor

Resolution

(megapixels)

Typical Image

Resolution (pixels)

Maximum Print

Size

Print Resolution Maximum Output

Size

2.16 1800 x 1200 6 x 4 inch 300 dpi Snapshot prints

3.9 2272 x 1704 7.6 x 5.7 inch 300 dpi ‘Jumbo’ snapshot

prints

5.0 2592 x 1944 8.6 x 6.5 inch 300 dpi 8 x 6 inch

enlargements

7.1 3072 x 2304 10.2 x 7.7 inch 300 dpi A4 sized prints

8.0 3264 x 2448 13.6 x 10.2 inch 240 dpi A4 sized prints

10.0 3648 x 2736 18.2 x 13.7 inch 200 dpi A3 sized prints

12.1 4000 x 3000 20 x 15 inch 200 dpi A3+ sized prints

14.7 4416 x 3312 22.1 x 16.6 inch 200 dpi A2 sized prints

21.0 5616 x 3744 31.2 x 20.8 inch 180 dpi A1 sized prints

This is an excerpt from Post Capture Pocket Guide.

Stochastic gradient decent (SGD)

• Basic idea:

- Loss is the sum of 𝑁 differentiable functions.

𝐿𝑜𝑠𝑠 𝒙 = σ𝑗=1
𝑁 𝑓𝑗(𝒙)

- Intend to minimize the loss

minσ 𝑗=1
𝑁

𝑓𝑗(𝒙)

- Gradient direction of 𝐿𝑜𝑠𝑠 𝒙 at a point 𝒙𝑖 is

𝛻 𝐿𝑜𝑠𝑠 𝒙 = σ𝑗=1
𝑁 𝛻𝑓𝑗(𝒙

𝑖)

- The new iterate is

𝒙𝑖+1 = 𝒙𝑖 − 𝜃𝑖 σ𝑗=1
𝑁 𝛻𝑓𝑗(𝒙

𝑖)

where 𝜃𝑖 > 0 is a step-length at 𝑖𝑡ℎ iteration.

Stochastic gradient decent (SGD)

• Basic idea:

- Instead of calculating 𝑁 gradients, randomly pick

some Ƹ𝑖 ∈ {1,2,… ,𝑁} and

use 𝛻𝑓 Ƹ𝑖(𝒙
𝑖) for σ𝑗=1

𝑁 𝛻𝑓𝑗(𝒙
𝑖) such that

𝒙𝑖+1 = 𝒙𝑖 − 𝜃𝑖 𝛻𝑓 Ƹ𝑖 𝒙𝑖

where 𝜃𝑖 > 0 is a step-length at 𝑖𝑡ℎ iteration.

SGD vs. GD

• Basic idea: (image from Analytics Vidhya)

SGD vs. GD

• Basic idea: (image from golden.com)

- SGD could be nasty

Stochastic gradient direction - SGD

• Reduce variations: (image from wikidocs.net)

Stochastic gradient direction - SGD

• Issues:

1. Will SGD converge to a local minimum?

- SGD may serve as an unbiased estimator such that

𝔼 𝑠𝑔𝑑 𝑥 = 𝛻𝐿𝑜𝑠𝑠(𝒙)

2. How to decide step-length at each iteration?

- large at beginning, small at the end ?

- overfitting

3. Randomly select one each time or stay on the same?

- does it really matter?

4. Will it be better to select more than one each time?

Good for large scale operations of deep networks!

Batch gradient decent
• (image from https://sweta-nit.medium.com/)

Initialization and stopping of training

• Initial weights

- Set the hidden node weights to small random

numbers distributed evenly around 0.

- Initialize half of each output node’s weights with

values of 1 and the other half with -1; if there is an

odd number of nodes, initialize bias weights at 0.

• Stopping rule

- Stop learning after a finite number of iterations

(epochs) or E becomes small enough, or not much

more improvement can be made.

Implementation examples
• Gradient decent (MIT 6.S191)

Can be very
computationally
expensive

Implementation examples
• Stochastic gradient descent (MIT 6.S191)

Implementation examples
• Stochastic gradient descent (MIT 6.S191)

Learning for generalization

• Questions:

1. Learning provides the best fit for the training examples

through optimization. But, will the good/expected

performance be generalized (or, holds valid) for new

examples in use?

2. Noise in the training data may cause the overfitting

problem that prevents generalization. How to avoid

overfitting?

Generalization
• Example: restaurant’s historical data for new year eve dinner

• NN Performance Better generalization ?

Overfitting prevention

• Commonly adopted rules:

1. reduce noise in the data

2. increase the sample size

3. do not over-train the network

4. limit the number of hidden nodes

5. conduct cross validation

Noise and sample size

• Statistical pre-treatment

Over training
• The course of training for an NN with 5 hidden nodes

Nodes in the hidden layer
• Limit the number of hidden nodes

– reduce the unnecessary complexity

Cross validation for the right network

*validation uses the weights
obtained by training.

More about ANN
• Multi-layer perceptron (MLP) network is most popular in

use.

• MLP can be shown mathematically as a universal

approximator under some assumptions.

• MLP networks are not the only feedforward neural

networks.

• Recurrent networks and radial basis function (RBF)

networks are also feedforward neural networks.

• Feedbackward neural networks exist for non-supervised

learning and mathematical optimizer with hardware

implementation of analogue circuits.

Example - Feedback neural net solver for QP problems

• IEEE TNN, Vol 11, No. 1, 2000, 230-240 (Y-H Chen & S-C Fang) Neurocomputing with

Time Delay Analysis for Solving Convex Quadratic Programming Problems

Learning with sequential data

• Examples:

- Auto texting

“Hei Google What ti.…

What tim….

What time ….”

- Music nodes

“Doe Ray Me Far …

Doe Ray Me Far Sew …

Doe Ray Me Far Sew La …”

Recurrent neural network (RNN)
• RNN is a feedforward neural network that stores short

memory of previous results and brings to current status to

process sequential data.

<image from simplilearn.com>

Example
• 高考复习进度

• 顺序 1：每周七天，导师出席与否，依序每日复习一科目

中文》数学》英文》物理》化学》生物》时事分析》中文

• 顺序 2: 导师请假日，自行复习昨日复习科目

• y =复习科目

• C =昨日科目 (recurrent)

• x = （星期，导师）

•

Recurrent neural network (RNN)

• MLP networks are commonly used for classifiers and

regression.

• Recurrent networks are particularly good for temporal

forecasting.

Example: Elman network

ℎ𝑡 = 𝜎ℎ 𝑊𝑥𝑥𝑡 +𝑊ℎℎ 𝑡−1 + 𝑏ℎ ; 𝑦𝑡 = 𝜎𝑦(𝑊𝑦ℎ𝑡 + 𝑏𝑦)

Radial basis function networks

• RBF network is a feedforward neural network using a

radial basis functions as its activation function.

• Radial basis function has the form of

• Gaussian function is a typical example:

Gaussian-type function
• Gaussian function is a typical example:

or 𝑔 𝑥 = exp(−𝛽 𝑥 − 𝜃 2)

• Observations:

1. For any 𝑏 (or 𝛽) > 0, 0 < 𝑔 𝒙 ≤ 1.

2. For the same 𝑏(or 𝛽) > 0, 𝑔 x is closer to 1 as

𝑥 is closer to 𝜽.

3. For the same 𝜽, 𝑔 𝒙 is closer to 1 𝑎𝑠 𝑏 goes larger
(𝑜𝑟 𝛽 𝑔𝑜𝑒𝑠 𝑠𝑚𝑎𝑙𝑙𝑒𝑟).

Radial basis function network

• Simple architecture RBFN (from Wikipedia)

𝑦 ∈ ℝ

𝑐𝑖 ∈ ℝ, 𝑖 = 1,… , 𝑁

𝑁 RBF neurons

1

𝒙 ∈ ℝ𝑛

Output

y = 𝑓 𝒙 = σ𝑖=1
𝑁 𝑐𝑖𝑔𝑖(𝒙) = σ𝑖=1

𝑁 ci exp(−𝛽 𝒙 − 𝜽𝑖
2)

where 𝑐𝑖 and 𝜽𝑖 may be separately learned by optimizing the fit.

RBFN multi-outputs

• Simple RBF network architecture
<https://mccormickml.com/2013/08/15/radial-basis-function-network-rbfn-tutorial/>

Different philosophy

• Radial basis function networks vs. MLP
• Image from https://towardsdatascience.com/radial-basis-functions-neural-networks-all-we-need-to-

know-9a88cc053448

Intuition behind RBFN
• Clustering in categories

• Membership/possibility

RBFN as a neural network

• Image from <https://mccormickml.com/2013/08/15/radial-basis-function-

network-rbfn-tutorial/>

Example – XOR operation

• Truth table

• 𝑥 𝑋𝑂𝑅 𝑦 | 𝑦 = 0 𝑦 = 1

𝑥 = 0 | 0 1

𝑥 = 1 | 1 0

Architecture of XOR RBFN:

- 2 input nodes

- 4 RBF neurons

- 1 output for XOR

- sign function for output

Example – XOR operation

• Architecture of XOR RBFN:

- 2 input nodes: 𝑥1, 𝑥2 for (𝑥, 𝑦)

- all weights equal to 1

- 4 RBF neurons:

𝜽1 = 0,0 𝑇, 𝜽2 = 0,1 𝑇 , 𝜽3 = 1,0 𝑇 , 𝜽4 = 1,1 𝑇

𝛽 =
1

2
, 𝑔𝑖 𝒙 = exp(−

1

2
𝒙 − 𝜽𝑖

2)

- 1 output for XOR

- connection weights 𝑐1 = −1, 𝑐2 = 1, 𝑐3 = 1, 𝑐4 = −1

- sign function for output

Example – XOR operation

• RBFN output

𝐼𝑛𝑝𝑢𝑡 𝑔1 𝑔2 𝑔3 𝑔4 σ𝑐𝑖𝑔𝑖 𝑜𝑢𝑡𝑝𝑢𝑡

0,0 1.0 0.6 0.6 0.4 − 0.2 0

0,1 0.6 1.0 0.4 0.6 0.2 1

1,0 0.6 0.4 1.0 0.6 0.2 1

1,1 0.4 0.6 0.6 1.0 − 0.2 0

MLP vs. RBFN
• Comments from <researchgate.net>

Approximation power of neural networks

• MLP networks

- Cybenko showed that a backpropagation MLP, with one hidden

layer and any fixed continuous sigmoidal nonlinear function, can

approximate any continuous function arbitrarily well on a compact set.

*G. Cybenko. Approximation by superpositions of a sigmoidal function.

Mathematics of Control, Signals, and Systems, 2:303-314, 1989.

- When used as a binary-valued neural network with the hard-limiter

(step) activation function, a backpropagation MLP with two hidden

layers can form arbitrary complex decision regions to separate

different classes.

*R. P. Lippmann. An introduction to computing with neural networks.

IEEE Acoustics, Speech, and Signal Processing Magazine, 4(2):4-22, 1987.

Approximation power of neural networks

• MLP networks (universal approximation)

- Leshno et al. showed that “a standard multilayer feedforward network

with a locally bounded piecewise continuous activation function can

approximate any continuous function to any degree of accuracy

if and only if the network's activation function is not a polynomial.”

*Leshno, M., Lin, V., Pinkus, A., Shochen, S. (1993). Multilayer feedforward networks with

a nonpolynomial activation function can approximate any function. Neural Networks, 6, 861-867.

Approximation power of neural networks

• RBF networks

- The most well-known result is due to Park and Sandberg, who showed

that if the RBF function used in the hidden layer is continuous almost

everywhere, bounded and integrable on ℝ𝑛 , and the integration is not

zero, then a three-layered neural network can approximate any

function in 𝐿𝑝(ℝ𝑛) with respect to the 𝐿𝑝 norm with 1 ≤ 𝑝 < +∞.

*Park, J., Sandberg, I. W. (1991). Universal approximation using radial-basis-function networks.

Neural Computation, 3(2), 246-257.

*Park, J., Sandberg, I. W. (1993). Approximation and radial-basis-function networks.

Neural Computation, 5, 305-316.

Approximation power of neural networks

• RBF networks (universal approximation)

• One of the most general results is due to Liao, Fang and Nuttle, who

showed that, if the radial-basis activation function used in the hidden

layer is continuous almost everywhere, locally essentially bounded, and

not a polynomial, then the three-layered radial-basis function network

can approximate any continuous function with respect to the uniform

norm. Moreover, Radial Basis Function Networks (RBFN) can

approximate any function in 𝐿𝑝(𝜇) , where 1 ≤ 𝑝 < +∞ and 𝜇 is any

finite measure, if the radial-basis activation function used in the hidden

layer is essentially bounded and not a polynomial.

*Liao, Y., Fang, S. C., Nuttle, H. L. W. (2003). Relaxed conditions for radial-basis function

networks to be universal approximators. Neural Networks, 16, 1019-1028.

	SVM-NN-Lecture-8-SCF
	Support vector Machines &�Neural Networks��Lecture 8 – Artificial NEURAL NETWORKS
	Artificial neural networks
	Recent advance in deep learning
	Recent advance in deep neural network
	Some of the key works in NN
	Some of the key works
	Mathematical foundation
	Key function: uncover nonlinear input-output relationship
	Question
	Artificial Neural Networks (ANN)
	Basic concepts of neural networks
	100 billions Neurons in Human Brain
	Artificial neural networks
	Artificial neural networks
	Feedforward perceptron
	How much can a perceptron do?
	How much can a perceptron do?
	Multi-output perceptron
	Single hidden layer (shallow) perceptron NN
	How much can a shallow network do?
	How much can a shallow network do?
	Exercise
	Exercise
	Multi-layer (deep) perceptron NN
	How much can a deep network do?
	Activation functions
	Activation functions
	Fundamentals of multi-layer perceptron NN
	Feed forward computations
	Feed forward computations
	ReLU leads to a piecewise linear approximator
	Backpropagation learning
	Backpropagation learning
	Delta learning rule – gradient decent method
	Gradient decent direction in approximation
	Approximation
	Approximation
	Gradient decent method
	Calculate gradient direction using chain rule
	NN learning mechanisms
	Online learning
	Still remember the chain rule?
	Delta learning rule – gradient decent method
	Delta learning rule
	Complexity of training
	Stochastic gradient decent (SGD)
	Stochastic gradient decent (SGD)
	SGD vs. GD
	SGD vs. GD
	Stochastic gradient direction - SGD
	Stochastic gradient direction - SGD
	Batch gradient decent
	Initialization and stopping of training
	Implementation examples
	Implementation examples
	Implementation examples
	Learning for generalization
	Generalization
	Overfitting prevention
	Noise and sample size
	Over training
	Nodes in the hidden layer
	Cross validation for the right network
	More about ANN
	Example - Feedback neural net solver for QP problems
	Learning with sequential data
	Recurrent neural network (RNN)
	Example
	Recurrent neural network (RNN)
	Radial basis function networks
	Gaussian-type function
	Radial basis function network
	RBFN multi-outputs
	Different philosophy
	Intuition behind RBFN
	RBFN as a neural network
	Example – XOR operation
	Example – XOR operation
	Example – XOR operation
	MLP vs. RBFN
	Approximation power of neural networks
	Approximation power of neural networks
	Approximation power of neural networks
	Approximation power of neural networks

