SUPPORT VECTOR MACHINES &
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LECTURE 8 —ARTIFICIAL NEURAL NETWORKS

A. Basic structure of neural networks
- Neuron, activation function, perceptron, feedforward NN
B. Backpropagation and learning
- Loss/reward function, online vs. batch learning and algorithms
C. Multi-layer neural networks and deep learning
- Scale, feature and computation, ReLU and SGD
D. Radial basis function neural network (RBFN)
E. Convolutional neural network (CNN)
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Artificial neural networks

- An artificial neural network (ANN or NN in short) is a
mathematical/computational model that mimics the
operations of human brains to create artificial intelligence

through some learning algorithms.
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Recent advance in deep learning

- Deep learning for computer vision, image procession,
pattern recognition, approximate reasoning, etc.

https://encrypted-
tbn0.gstatic.com/images?g=tbn:ANd9GcRAqwxAQi0s2cvaWXxZRPV5Y53a4vOy
jtHURQ&usqp=CAU



Recent advance in deep neural network

- |dentify a dog in a photo (Machine Learning Crash Course: Part 3 - ML@B Blog)

How a Neural Network "Works”
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- Pixels line segments  distinct features  judgement
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Some of the key works in NN

- Alexander Bain (1873 — Mind and Body) and William
James (1890 — The Principles of Psychology) uncovered
preliminary theoretical bases of “thoughts and body
activities are from interactions of neurons (via electric
flows) in the brain”.

- Tested by C. S. Sherrington (1898) that led to the concept
of habituation.

- Warren McCulloch and Walter Pitts (1943) built the first
“threshold logic” computational model.

- The concept of NN (B-type unorganized machines) had
first been officially raised by Alan Turing in his 1948 paper.



Some of the key works

- F. Rosenblatt (1958) created the first “perceptron’/artificial
neuron. (Some called him “father of deep learning”).

- Paul Werbos (1974) PhD Dissertation at Harvard
pioneered the concept of “backpropagation”.

- J. J. Hopfield (1982) introduced one classical type of
artificial neural network called recurrent Hopfield network.

- D. E. Rumelhart and J. McClelland (1986) provided a full
exposition on the use of connectionism in computers to
simulate neural processes.

- G.E. Hinton, S. Osindero, and Y. Teh (2006) proposed a
fast learning algorithm for deep belief nets.



Mathematical foundation

- Key function: uncover a non-explicit input-output relation.

- Universal approximation: (From Wikipedia)

Universal approximation theorem: Let C(X,Y) denote the set of continuous functions from X to Y. Let
o € C(R,R). Note that (¢ 0 z); = o(z;), s0 o 0 x denotes ¢ applied to each component of .

Then ¢ is not polynomial if and only if for every n € N, m € N, compact K C R", f € C(K,R™),e > 0 there exist
keN,Ae R beRF, C e R™F such that

sup || f(z) — g(z)| <e
zeK

where

g(z) =C- (oo (A -z +b))



Key function: uncover nonlinear input-output relationship

- Basic model of an artificial neural network
data
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- Prediction? Classification?
- Patterns? Universal approximation?




Question

- Basic model of an artificial neural network
data

x
=
15
>
&

R(x,y) =? Relationship
y = f(x) = ? Function

| o '
Lo b oo LM<

O 00 0= =<2«
O = a0 a0
[ P o P, Y




Artificial Neural Networks (ANN)

- Principle:
- complexity can be embedded in layered simplicity
(layered simplicity can generate desired complexity)

Implication:
- the intelligence (computational power) of a neural
network comes from properly layered neurons

Warren McCulloch and Walter Pitts’ work of 1943 ("A Logical Calculus
of Ideas Immanent in Nervous Activity". Bulletin of Mathematical
Biophysics. 5 (4): 115-133. doi:10.1007/BF02478259) opened the
subject by creating a computational model for neural networks.
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Basic concepts of neural networks

- A brain is composed of some network of neurons.

- A typical neuron receives input — either excitation or inhibition —
from many other neurons.

- When its net excitation reaches a certain level, the neuron fires.

- The firing is propagated through a branching axon to many other
neurons, where it in turn acts as input to those neurons.

- A neuron always computes the same function.

- We learn because the strength of connections between neurons
changes.

- Because the strength of the connections between the neurons in
the network can change, the relationship of the network’s output
can change, the relationship of the network’s output to its input
can be altered by experience.



100 bilions Neurons in Human Brain
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Artificial neural networks

Neuron — the computational element

Schematic Structure of a Biological Neuron
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Artificial neural networks

Neuron — th e com p ut a‘“ on al e | ement Schematic Structure ofa Biological Neuron

Mathematics of a Conceptual Neuron

Other Axons  Synapses Soma Axon
(Inputs) (weights) (Aggregation (Outputs)
% Activation)
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. Y= EWiiXi+ )
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Xn B,

(bias)
output of neuron j: y; = ¢(w;" x + b;)
activation function ¢(:) : R - R
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Feedforward perceptron

- Simplified — one output (from MIT 6.5191 introtodeeplearning.com)
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How much can a perceptron do?

- Data

X1 X | X3 | Y
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How much can a perceptron do?

- Activation function Perceptron model

| Sign function

1 y=¢wlx+b)
= sign (0.3x; + 0.3x, + 0.3x3 — 0.4)

(Work like SVM?)
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Multi-output perceptron

- Simplified —multiple outputs (from MIT 6.S191introtodeeplearning.com)

X1
v1 = g(z1) .

X2
vz = g(z2) N

-

7
Zi = Wqo; + E X W
J=1

y; = ¢(W] x + b)), j = 1,2 Type equation here.

_ Vi) — (p(W’{ x+b1) A T
Y= ()’2) o ((l)(wg x+by) ) o (I)(W X+ b)




Single hidden layer (shallow) perceptron NN

- Simplified (from MIT 6.S191introtodeeplearning.com)

Inputs Hidden Final Output
m dq
1 1 ~ 2 2
j=1 j=1

yi =¢ (( W}Z))T @ ((W(l))Tx + b(l)) + bj(z)),j =1,2

y==® (( w®) ¢ ((w<1>)Tx + b<1>) + b<2>>



How much can a shallow network do?

1

- Data 3/4 —

1/4

9
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square wave

- Connections & weights
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How much can a shallow network do?

Activation function shallow network model
Example: sigmoid function ! f W
1 y
Q(Z)=J(z):1+e_z 0
| /— Ohidden nodes 1
i

sigmoid function ’

output node
(work like an approximator?)

squared wave



Exercise

- Sigmoid function value table

-y, = sig (100x — 30)

* vy, = sig(—100x + 70)

-z = sig (2.225y, + 2.225y, — 3.350)

Sigmoid
Sigmoid Function

1.0

0.9 /|
0.8 / o(x) =5 ,lc_

1 /’ \ ' o /}/

-

0.6

0.5

Y Axis

0.4
: Y, \ o /
0.3 0.7 o2 /

0.1 /

//

0.0 — linspace(-10,10,100) |
! ! | ! ! | ! !

-1+10-9-8-7T-6-5-4-3-2-10 1 2 3 4 5 6 7 8 9 1011
X Axis



EXxercise
- Sigmoid function value table
. Sigmoid
© y1 = sig (100x — 30) Sigmoid Function
« ¥y, =sig(—100x + 70) 1.0 —
. 7z = sig (2.225y; + 2.225y, — 3.350) 09 /
0.8 {/ U{ x) — 1 'lc_

A : :

: / \ /

Y Axis
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Multi-layer (deep) perceptron NN

- Simplified (from MIT 6.S191introtodeeplearning.com)

®
-

Inputs Hidden Output



How much can a deep network do?

- ldentify a dog in a photo (Machine Learning Crash Course: Part 3 - ML@B Blog)

@ How a Neural Network “Works"
' ( }‘ ~

Are there .
v% Isita yes/no . -
dog? - T e

Are there
patches
of lines?

Are there
2 ears?

input: every single pixel of the image

Is there a
nose?
© Machine Learning @ Berkeley
- Pixels line segments  distinct features judgement

convolution layer regular layer



Activation functions

- Objective: to fire a neuron

Sign function’ 1 Linear function
! 0.5 f’f{ff
0 ] VS 0 ’{_/_f/
; a5
N ] -
L _.1 il

-1 n 1 R o 1

bio-neuron possible-neuron?

- Issues:
- sharp vs. dull

- first order information (gradient information)



Activation functions

- Commonly used activation functions

Sigmoid Function Hyperbolic Tangent

W
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0.5 / i g'lz)
Y
/ N\
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Z =
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Z

g(z)=

9'(2) = g(2)(1 - g(2)) 9' (@) =1-g(z)*

- Pros and cons?

Rectified Linear Unit (RelLU)

— )
4 —

; /

5 0 5

g(z)=max(0,z)

otherwise

' 1, z>0
g(z')—[0



Fundamentals of multi-layer perceptron NN

- Feedforward with backpropagation
- for each neuron/node, activation function is fixed,
connection weights may change (learning)
- input information feeds forward for computing outputs
(in testing and in use)
- error/loss information propagates backward for adjusting
connection weights (in training)

- References:
— David Rumelhart, Geoffrey Hinton, Ronald
Williams(1986)

— David Parker (1982.1985) / Yann Le Cun (1986)

— First Discovery of back propagation goes to Paul
Werbos (1974 Harvard PhD thesis “Beyond
Regression™)
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Feed forward computations

- Example: 3-layer input-hidden-output shallow network

1=1

yJ:g(uj)a j:1:°°°a']a
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Feed forward computations

- Example: 3-layer input-hidden-output shallow network

I J
u; = ap; + Zaij.’lﬁ?:, v = bok + ijkyja
i=1 J=1

yi =g(u;), j=1,....J, zr=g(v), k=1,.... K

z=®B'®(ATx + ay) + by)



RelLU leads to a piecewise linear approximator

- Hanin, Boris; Sellke, Mark (March 2019). "Approximating Continuous
Functions by ReLU Nets of Minimal Width". Mathematics. MDPI. 7 (10):
992. arXiv:1710.11278. doi:10.3390/math7100992.

z=®B'®(A"x+ ay) + b,)

¢(v) = ReLU(v) = max{0, v} is a piecewise linear
function
= Z is piecewise linear in x
= NN using ReLU activation provides a
piecewise linear approximation of the underlying
Input-output relation.
Good for large scale operations of deep networks!


https://doi.org/10.3390%2Fmath7100992
https://en.wikipedia.org/wiki/ArXiv_(identifier)
https://arxiv.org/abs/1710.11278
https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.3390%2Fmath7100992
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Backpropagation learning

- Example: 3-layer input-hidden-output shallow network
Mean squared error (2-norm) model

- Objective: to find the weights/coefficients {a;;, bj }

that provides the best fit between the neural network
output (z) and the target function value (t).



Backpropagation learning

- Example: 3-layer input-hidden-output shallow network

- Model:  Minimizing the mean squared error

N K
% Zn:l Zk:l(zkn — tk:n)2

E =
NK

N: number of examples in the data set
K: number of outputs of the network
tren:  kth target output for the nth example
k. kth output for the nth example



Delta learning rule — gradient decent method

- Objective: min E'(a;;, bj) - quite complex

- Principle: adjust current weights along the negative
gradient direction of the error/loss function with a proper
step-length to reduce the error step by step.




Gradient decent direction in approximation
- Taylor expansion theorem
e feC!
f(z%) = f(z') + Vf(z)(z? — ')
e feC?
f(z%) = f(z') + Vf(z')(z* - =)

4—%(:1:2 — YT F(z)(z? - z!)



Approximation

When r == rl

m—1

1
fl@)= fle') + ) d"fla'iz —2')
k=1
Take m = 2

flz) = f(z') + Vf(z' )z —z')
Assume V f(z!) # 0.

- Take ¥ — ' =V f(z!). i.e., moving from z!

in the gradient direction at z!

flz) = f(z') + [V f(=)I® > flz')



Approximation

- For r — 2! = —[Vf(x!)], i.e., moving from !
in the negative gradient direction

flz) = f(z') - IVf(z")I* < f(z)

- Foranyd =z — !

Vi) (z —=z') = |d]|[Vf(z")| cos®
——
projection of Vf(r!) onto d



Gradient decent method

- Facts: For a differentiable function f(x): R™ - R

1. Moving along the gradient direction Vf(x) will increase
the objective value.

2. Moving along the negative gradient direction—Vf(x) will
decrease the objective value.

3. The gradient direction Vf(x) is the steepest
ascent direction for moving.

4. The negative gradient direction —Vf(x) is the steepest
decent direction for moving.

5. Gradient decent method

Xnew = Xcurrent — HVf (xcurrent)
with a step-length 6 > 0.



Calculate gradient direction using chain rule

- Chain rule for the composition of two differentiable
functions f and g:

h(x) =f(g(x) = h' () =f"(gx)g’(x)

- Expressed in Leibniz’s notation
dz _ dz dy
dx dy dx

- General form

dfy _ dfidfs  dfn
dx dfz dfg dx




NN learning mechanisms
- Example: 3-layer input-hidden-output shallow network

- Online (example by example) learning
N=1

1 K

_é . 2
EKEEkZI(zk—tk)

- (Whole) batch learning

N K
A 1
E'= NKE = 5 E E :(an_tkn)Q

- Stochastic (batch) learning
- randomly choose a small batch of examples



Online learning
- Example: 3-layer input-hidden-output shallow network

U; = ao; + E Q;5T4, UV — bor + E bjkyja

y;j = g(uj). j=1,..., g, oz =g(ur), k=1,..., K
- Online (example by example) learning
N =1

K
E2KE = 5;_:(% — 1)

Gradient information (chain rule)

— — . n K n . .
JE  0F 0z, Ov, Prs J=10 or OF Do Qo) vy oy
_ _ dayj o Dz, Duy, Oy; | Ouj dagj
Objr. Oz, Qui Oy, PRy, J=1000J
Whel‘e qj:flj',“ Z == 1,,1-

pr = (2 = te)zi(1 = 21)

where

T K
- b (1 — .
y;i = glag; + Z&ijib’i) % L;pk ”k] vt =)
=1



Still remember the chain rule?

- Hint:

A
zp = glvg) = TTe— "k

J
Uk = bok + 25— bjry;

yus

2

E=L00 (e —th)?

1

A
g(uj) = =

I
a‘ﬂj + Zi:l a'ij L

SE azk

9L — (2, —tn)

g,!i}i = Zk(l — Ek)

i’?wk o 11' J -

Iy .
yj? J = 1.

81};3 .

dyj ik

1. 2=0

daj

dzp Ouyg - (Zk o tk)Zk(l o Zk‘)

OF Oz, Oug

>k
k=1 0z, vy, Oy;

ﬁuj

£ ?:=1_ﬁ...

[Ele Pkbjk] y;(1—

yji)



Delta learning rule — gradient decent method

- Delta rule: - Iteratively updating the weights (a;;, b;x)

w™ T =™ — \d™

where N Onli N =1
i OE nline, =

A" — Z (% ) Batch, N

n=1 meomn Stochastic, < N.

A = step length

- Related Questions:
1. Will it converge to a local minimum?

2. How efficient?
3. How to choose the step-length?
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Delta learning rule

Enhancement with memory:

e Momentum

wm+1 — w™ — /\[#dm i (1 _ #)dm—l]

e Adaptive learning rate / Second order information
learning.
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Complexity of training

. Pote ntl al p ro b I @IMNS: Thisis an excerpt from Post Capture Pocket Guide.

Sensor Typical Image Maximum Print Print Resolution Maximum Output
Resolution Resolution (pixels) Size Size
(megapixels)

2.16 1800 x 1200 6 x 4 inch 300 dpi Snapshot prints

3.9 2272 x 1704 7.6 x5.7 inch 300 dpi ‘Jumbo’ snapshot
prints

5.0 2592 x 1944 8.6 x 6.5inch 300 dpi 8 x 6 inch
enlargements

7.1 3072 x 2304 10.2x 7.7 inch 300 dpi A4 sized prints

8.0 3264 x 2448 13.6 x 10.2 inch 240 dpi A4 sized prints

10.0 3648 x 2736 18.2x 13.7 inch 200 dpi A3 sized prints

12.1 4000 x 3000 20 x 15inch 200 dpi A3+ sized prints

14.7 4416 x 3312 22.1x16.6inch 200 dpi A2 sized prints

21.0 5616 x 3744 31.2x20.8inch 180 dpi Al sized prints




Stochastic gradient decent (SGD)

- Basic idea:
- Loss is the sum of N differentiable functions.

Loss(x) = X1, fi(x)
- Intend to minimize the loss
. N
min ), i=1 fi(x)
- Gradient direction of Loss(x) at a point x! is
V Loss(x) = ?’=1 Vfi( xh)
- The new iterate Is
xi+1 — xi _ Hi Zyzl Vf]( xi)
where 0; > 0is a step-length at i*" iteration.



Stochastic gradient decent (SGD)

- Basic idea:
- Instead of calculating N gradients, randomly pick
somei € {1,2,..,N}and
use Vf;(x") for X, Vf;(x") such that

x*tt = xt — 9, Vfi( )
where 6; > 0 is a step-length at it" iteration.
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SGDvs. GD

- Basic idea: (image from Analytics Vidhya)

Stochastic Gradient Descent Gradient Desoent
=\ ez /j\\
) '\\Q;:: o /' )
AN

Figure 1; SGD vs GD
“+* denotes a minimum of the cost. SGD leads to many oscillations to reach convergence. But each step is a lot faster to
compute for SGD than for GD, as it uses only one training example (vs. the whole batch for GD).



D
SGDvs. GD

- Basic idea: (image from golden.com)
- SGD could be nasty




Stochastic gradient direction - SGD

- Reduce variations: (image from wikidocs.net)

Stochastic Gradient Stochastic Gradient
Descent withhout Descent with
hMomentum Komenium



Stochastic gradient direction - SGD

- Issues:

1. Will SGD converge to a local minimum?

- SGD may serve as an unbiased estimator such that
E(sgd(x)) = VLoss(x)

2. How to decide step-length at each iteration?
- large at beginning, small at the end ?
- overfitting

3. Randomly select one each time or stay on the same?
- does it really matter?

4. Will it be better to select more than one each time?

Good for large scale operations of deep networks!



Batch gradient decent

- (Image from https://sweta-nit.medium.com/ )

Batch GD

-Slowest
- Perfect gradient

Stochastic GD
- Fastest
- Rough-estimate grad

Mini-batch GD

-Compromise




Initialization and stopping of training

- Initial weights
- Set the hidden node weights to small random
numbers distributed evenly around O.
- Initialize half of each output node’s weights with
values of 1 and the other half with -1; if there is an
odd number of nodes, initialize bias weights at O.
- Stopping rule
- Stop learning after a finite number of iterations
(epochs) or E becomes small enough, or not much
more improvement can be made.



Implementation examples

- Gradient decent (MIT 6.5191)

Algorithm
. Initialize weights randomly ~N (0, %)

2. Loop until convergence:

3. Compute gradient, a{,::)
4. Update weights, W « W —n a];:::)
5. Return weights
Can be very

computationally
expensive



Implementation examples
- Stochastic gradient descent (MIT 6.5191)

Algorithm
. Initialize weights randomly ~N (0, 0%)

2. Loop until convergence:

3 Pick single data point i
4 Compute gradient, ﬂé(:)
aJ;(w
5. Update weights, W « W — n 2oCV)
6. Return weights
Easy to compute but:
very noisy

(stochastic)!



Implementation examples

- Stochastic gradient descent (MIT 6.5191)

Algorithm
| Initialize weights randomly ~N (0, 62)

2. Loop until convergence:
RN—

3. Pick batch of B data points .. |
W) _1cp kw)|

4 . =
Compute gradient, ow  p&k=1" gy o
5. Update weights, W « W —n afa(w “

6. Return weights

Fast to compute and a much better
estimate of the true gradient!
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Learning for generalization

- Questions:

1. Learning provides the best fit for the training examples
through optimization. But, will the good/expected
performance be generalized (or, holds valid) for new
examples in use?

2. Noise in the training data may cause the overfitting
problem that prevents generalization. How to avoid
overfitting?



Generalization

- Example: restaurant’s historical data for new year eve dinner
10 Years Data e

- NN Performance Better generalization ?

65

o
o
o
o [m]
[m] [m]
o

25 [ O
30 70

Reservations .
Reservations

Network Quitputs

More Real Model
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Overfitting prevention

- Commonly adopted rules:
1. reduce noise in the data
2. Increase the sample size
3. do not over-train the network
4. limit the number of hidden nodes
5. conduct cross validation



Noise and sample size

- Statistical pre-treatment

30 70
Reservanons

Anendance
65

More Real Model
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Over training

- The course of training for an NN with 5 hidden nodes
per— =




Nodes In the hidden layer

- Limit the number of hidden nodes
— reduce the unnecessary complexity
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Cross validation for the right network

Output of twa natwarks comnaread to frainine and validation samnlas

Validstion Samiple 1

*validation uses the weights
obtained by training.

Validstion Sample 2

el

Error 08
06

04

02

\ Validation Sample 2
LI Training Sample

0 25 50 75 100

0

Epochs(x1000)

Error on Two Validation Samples



More about ANN
- Multi-layer perceptron (MLP) network is most popular in
use.

- MLP can be shown mathematically as a universal
approximator under some assumptions.

- MLP networks are not the only feedforward neural
networks.

- Recurrent networks and radial basis function (RBF)
networks are also feedforward neural networks.

- Feedbackward neural networks exist for non-supervised
learning and mathematical optimizer with hardware
Implementation of analogue circuits.



Example - Feedback neural net solver for QP problems

- IEEE TNN, Vol 11, No. 1, 2000, 230-240 (Y-H Chen & S-C Fang) Neurocomputing with
Time Delay Analysis for Solving Convex Quadratic Programming Problems

zg_[t__' T) Z_]
zo(t — 7) *
z)(t—7) -1
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Learning with sequential data

- Examples:
- Auto texting
“Hel Google What ti....
What tim....
What time ....”

- Music nodes
“Doe Ray Me Far ...
Doe Ray Me Far Sew ...
Doe Ray Me Far Sew La ...”



Recurrent neural network (RNN)

- RNN is a feedforward neural network that stores short
memory of previous results and brings to current status to
process sequential data.

Qutput Layer y

A
C
Hidden Layers
B‘

X

<image from simplilearn.com> Input Layer

A, B and C are the parameters



Example

- 2BEEHE

- i 1 BEtXK SIEESE - KFEHES—RE
P ) #F) =) DB BF) £9) WSoH) X

- ifE 2: SIMERE - BITEMEHESRE

y =ESIR B

Output Layer y

Al
L ‘C_l C =FEEH®IB (recurrent)
Hidden Layers
|

X X=(§,Hﬁ’§_ryfﬁ)

Input Layer

A, B and C are the parameters



Recurrent neural network (RNN)

- MLP networks are commonly used for classifiers and
regression.
- Recurrent networks are particularly good for temporal

forecasting.
W}i WB‘

Wy

Wi Wy q Wy q
3

Example: EIman network
h; = Uh(Wxxt + Wyhhg—1y + bh) ;Y = oy,(Wyhe + by)



Radial basis function networks

- RBF network is a feedforward neural network using a
radial basis functions as its activation function.

- Radial basis function has the form of

9(35793 b) - QI)(LEB)

where ¢ : R - R, r € R", # € R" in a
“center vector”, and b € R is a “spread

parameter” .

- Gaussian function is a typical example:

b(2) = exo(- 1552



Gaussian-type function

- Gaussian function is a typical example:
g(z) = exp(—@) or g(x) =exp(—pllx — 6%
- Observauons:
1.Forany b (or) >0, 0<g(x) <1.
2. For the same b(or 8) > 0, g(x) is closerto 1 as
x is closer to 6.

3. For the same 0, g(x) is closer to 1 as b goes larger
(or B goes smaller).

O N

B
B
B




Radial basis function network
- Simple architecture RBFN (from Wikipedia)

Output v
yeER

Linear weights
Ci € R, I = 1, ,N

Radial basis

functions
N RBF neurons
Weights
Input x
n
X ER

Output
y=f(x) == 1Clgl(x) Zl 1 ¢ exp(—pllx — Hi”z)

where c¢; and 8; may be separately learned by optimizing the fit.



RBFN multi-outputs

- Simple RBF network architecture
<https://mccormickml.com/2013/08/15/radial-basis-function-network-rbfn-tutorial/>

RBF
Neurons
Input Vector Weighted
Cat.1 Sums
Weights

/ e Category 1

Score
o Categoryc

| Score

H is the prototype to
compare against



Different philosophy

- Radial basis function networks vs. MLP

- Image from https://towardsdatascience.com/radial-basis-functions-neural-networks-all-we-need-to-
know-9a88cc053448

MLP RBF



Intuition behind RBFN

Clustering

Membership/

IN

categories

-15

-2

-2

2

1.5

possibility




RBFN as a neural network

- Image from <nttps://mccormickml.com/2013/08/15/radial-basis-function-
network-rbfn-tutorial/>

Input Hidden Qutput
Layer Layer Layer

n Input k Hidden c Outputs
Values Nodes (1 per
(1 per category)
prototype)



L
Example — XOR operation

- Truth table

- X (XOR) y y=20 y=1
x=0 0 1
x=1 1 0

Architecture of XOR RBFN:
- 2 Input nodes
- 4 RBF neurons
- 1 output for XOR
- sign function for output




L
Example — XOR operation

- Architecture of XOR RBFN:

- 2 input nodes: (x4, x,) for (x,y)

- all weights equal to 1

- 4 RBF neurons:
6, =(0,0)",0,=(0,1"605=(107",0,=11D"
B =2, 9:(x) = exp(—lx — 6;]1%)

- 1 output for XOR

- connection weights ¢; = —1,¢c, = 1,¢c3 = 1,¢c, = —1

- sign function for output




L
Example — XOR operation

- RBFN output

Input g, 92 g3 g4 .cg;  output
(0,00 1.0 06 06 04 —0.2 0
(01) 06 10 04 06 0.2 1
(1,0) 0.6 04 1.0 0.6 0.2 1
(11) 04 06 06 10 —02 0




R - :
MLP vs. RBFN

- Comments from <researchgate.net>

Feature of network Neural network
architecture type
MLP RBF
Signal transmission  Feed-forward Feed-forward
Process of building One stage Two different
the model independent stages:

o First stage:
the probability distribution
is established by means of
radial basis functions
o Second stage:
the network learns

the relations between input

r and output y
Note: The lag is only visible
in RBF in the output layer

Threshold Yes No
Type of parameters  Weights and e Location and width
thresholds of basis function

o Weights binding basis
functions with output

Functioning time Faster Slower (bigger memory
and size required)

Learning time Slower Faster

Source: own, on the basis of Bishop (1995); Haykin (2011); Migdal Najman and Najman
(2013); Skubalska-Rafajlowicz (2011); West (2000).



Approximation power of neural networks

- MLP networks

- Cybenko showed that a backpropagation MLP, with one hidden
layer and any fixed continuous sigmoidal nonlinear function, can
approximate any continuous function arbitrarily well on a compact set.

*G. Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals, and Systems, 2:303-314, 1989.

- When used as a binary-valued neural network with the hard-limiter
(step) activation function, a backpropagation MLP with two hidden
layers can form arbitrary complex decision regions to separate
different classes.

*R. P. Lippmann. An introduction to computing with neural networks.
IEEE Acoustics, Speech, and Signal Processing Magazine, 4(2):4-22, 1987.
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Approximation power of neural networks

- MLP networks (universal approximation)

- Leshno et al. showed that “a standard multilayer feedforward network
with a locally bounded piecewise continuous activation function can
approximate any continuous function to any degree of accuracy
if and only if the network's activation function is not a polynomial.”

*Leshno, M., Lin, V., Pinkus, A., Shochen, S. (1993). Multilayer feedforward networks with
a nonpolynomial activation function can approximate any function. Neural Networks, 6, 861-867.



L
Approximation power of neural networks

- RBF networks

- The most well-known result is due to Park and Sandberg, who showed
that if the RBF function used in the hidden layer is continuous almost
everywhere, bounded and integrable on R™, and the integration is not
zero, then a three-layered neural network can approximate any
function in LP (R™) with respect to the LP norm with 1 < p < +oo.

*Park, J., Sandberg, I. W. (1991). Universal approximation using radial-basis-function networks.
Neural Computation, 3(2), 246-257.

*Park, J., Sandberg, I. W. (1993). Approximation and radial-basis-function networks.
Neural Computation, 5, 305-316.



L
Approximation power of neural networks

- RBF networks (universal approximation)

- One of the most general results is due to Liao, Fang and Nuttle, who
showed that, if the radial-basis activation function used in the hidden
layer is continuous almost everywhere, locally essentially bounded, and
not a polynomial, then the three-layered radial-basis function network
can approximate any continuous function with respect to the uniform
norm. Moreover, Radial Basis Function Networks (RBFN) can
approximate any function in LP(u) , where 1 < p < +o0 and u is any
finite measure, if the radial-basis activation function used in the hidden
layer is essentially bounded and not a polynomial.

*Liao, Y., Fang, S. C., Nuttle, H. L. W. (2003). Relaxed conditions for radial-basis function
networks to be universal approximators. Neural Networks, 16, 1019-1028.
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