
SUPPORT VECTOR MACHINES &
NEURAL NETWORKS

LECTURE 7 – SUPPORT VECTOR MACHINES 
PART # IV

A. Bi-classification
History, LSVM, Approximate LSVM, Soft LSVM,
Kernel-based linear SVM, nonlinear SVM

B. Multi-classification
OVO, OVA, Twin SVM

C. Prediction
Support Vector Regression (SVR)
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Regression 
• Linear regression: 
- a model that assumes a linear relationship between the

input variables (𝒙𝒙) and the single output variable (𝑦𝑦) 
such that 𝑦𝑦 can be calculated from a linear combination
of the input variables (𝒙𝒙).

𝑦𝑦 = 𝒘𝒘𝑇𝑇𝒙𝒙 + 𝑏𝑏 + 𝜀𝜀

Fit the data to a supporting hyperplane
with the minimum mean squared
error.



Support vector regression (SVR)
• Basic idea: 
- Find a hyperplane centering around the data by boxing
as many data points as possible in a given tube around
the hyperplane.



Support vector machines: classification vs. regression

• SVM: data-points in ℝ𝑛𝑛 SVR: data-points in ℝ𝑛𝑛+1

with class babel 𝑦𝑦 with data value 𝑦𝑦
separate data-points            box data-points in a tube
apart                 



Linear support vector regression 
• Problem settings:
- Dataset { (𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖) ∈ ℝ𝑛𝑛 × ℝ | 𝑖𝑖 = 1,2. , , , ,𝑁𝑁} of 
𝑁𝑁 data points

- tube tolerance 𝜀𝜀 > 0 (𝒙𝒙,𝑓𝑓 𝒙𝒙 )

- Aim: to find
affine map 𝑓𝑓 𝒙𝒙 = 𝒘𝒘𝑇𝑇𝒙𝒙 + 𝑏𝑏
with wide margin such that 
𝑦𝑦𝑖𝑖 − 𝑓𝑓 𝒙𝒙𝑖𝑖 < 𝜀𝜀, 𝑖𝑖 = 1, … ,𝑁𝑁



Observation
• Question: How big the box tolerance 𝜀𝜀 should be?

- When 𝜀𝜀 > 0 is too small, we may not be able to 
box all data-points in the tube.



Linear soft support vector regression
• Primal model: (For a given 𝐶𝐶 > 0)

𝑀𝑀𝑖𝑖𝑀𝑀 1
2
𝒘𝒘 2

2 + 𝐶𝐶 ∑𝑖𝑖=1𝑁𝑁 𝜉𝜉𝑖𝑖
s.t. 𝑦𝑦𝑖𝑖 − 𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 − 𝑏𝑏 ≤ 𝜀𝜀 + 𝜉𝜉𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑁𝑁 (LSSVR)

𝑦𝑦𝒊𝒊 − 𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 − 𝑏𝑏 ≥ −𝜀𝜀 − 𝜉𝜉𝑖𝑖, 𝑖𝑖 = 1, … ,𝑁𝑁
𝒘𝒘 ∈ ℝ𝑛𝑛,𝑏𝑏 ∈ ℝ, 𝝃𝝃 ∈ ℝ+

𝑁𝑁

soft margin with 𝜀𝜀 − 𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 loss function



Linear soft SVR - LSSVR
1. (LSSVR) is a convex quadratic program with 
𝑀𝑀 + 1 free variables, 𝑁𝑁 non-negative variables, and
2𝑁𝑁 linear inequality constraints.

2. (LSSVR) is always feasible.

3. Who are supporting vectors?

4. Any dual information?



Dual LSSVR - DLSSVR
• Lagragian 

𝐿𝐿 𝒘𝒘,𝑏𝑏, 𝝃𝝃,𝜶𝜶,𝜶𝜶∗,𝜼𝜼 = 1
2
𝒘𝒘 2

2 + 𝐶𝐶 ∑𝑖𝑖=1𝑁𝑁 𝜉𝜉𝑖𝑖
− ∑𝑖𝑖=1𝑁𝑁 𝜂𝜂𝑖𝑖𝜉𝜉𝑖𝑖 − ∑𝑖𝑖=1𝑁𝑁 𝛼𝛼𝑖𝑖 𝜀𝜀 + 𝜉𝜉𝑖𝑖 − 𝑦𝑦𝑖𝑖 + 𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏
−∑𝑖𝑖=1𝑁𝑁 𝛼𝛼𝑖𝑖∗ 𝜀𝜀 + 𝜉𝜉𝑖𝑖 + 𝑦𝑦𝑖𝑖 − 𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 − 𝑏𝑏

• KKT conditions 
- Primal & dual feasibility
(i) 𝛼𝛼𝑖𝑖 ,𝛼𝛼𝑖𝑖∗, 𝜂𝜂𝑖𝑖 ≥ 0, 𝑖𝑖 = 1, … ,𝑁𝑁;
(ii) 𝜀𝜀 + 𝜉𝜉𝑖𝑖 − 𝑦𝑦𝑖𝑖 + 𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏 ≥ 0; 𝜀𝜀 + 𝜉𝜉𝑖𝑖 + 𝑦𝑦𝑖𝑖 − 𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 − 𝑏𝑏 ≥ 0 ;



Dual LSSVR - DLSSVR
• Lagragian

𝐿𝐿 𝒘𝒘,𝑏𝑏, 𝝃𝝃,𝜶𝜶,𝜶𝜶∗,𝜼𝜼 = 1
2
𝒘𝒘 2

2 + 𝐶𝐶 ∑𝑖𝑖=1𝑁𝑁 𝜉𝜉𝑖𝑖
− ∑𝑖𝑖=1𝑁𝑁 𝜂𝜂𝑖𝑖𝜉𝜉𝑖𝑖 − ∑𝑖𝑖=1𝑁𝑁 𝛼𝛼𝑖𝑖 𝜀𝜀 + 𝜉𝜉𝑖𝑖 − 𝑦𝑦𝑖𝑖 + 𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏
−∑𝑖𝑖=1𝑁𝑁 𝛼𝛼𝑖𝑖∗ 𝜀𝜀 + 𝜉𝜉𝑖𝑖 + 𝑦𝑦𝑖𝑖 − 𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 − 𝑏𝑏

• KKT conditions 
Stationarity 
(iii) 𝛻𝛻𝒘𝒘𝐿𝐿 = 𝒘𝒘− ∑𝑖𝑖=1𝑁𝑁 𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗ 𝒙𝒙𝑖𝑖 = 0;
(iv) 𝛻𝛻𝑏𝑏𝐿𝐿 = ∑𝑖𝑖=1𝑁𝑁 𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗ = 0;
(v) 𝛻𝛻𝜉𝜉𝑖𝑖𝐿𝐿 = 𝐶𝐶 − 𝜂𝜂𝑖𝑖 − (𝛼𝛼𝑖𝑖 + 𝛼𝛼𝑖𝑖∗) = 0;

⟹ 𝜂𝜂𝑖𝑖 = 𝐶𝐶 − (𝛼𝛼𝑖𝑖+𝛼𝛼𝑖𝑖∗) ≥ 0 and 0 ≤ 𝛼𝛼𝑖𝑖 + 𝛼𝛼𝑖𝑖∗ ≤ 𝐶𝐶



Dual soft support vector regression -DLSSVR
• Dual model:

𝑀𝑀𝑀𝑀𝑀𝑀 − 1
2
∑𝑖𝑖=1𝑁𝑁 ∑𝑗𝑗=1𝑁𝑁 𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗ < 𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗 > (𝛼𝛼𝑗𝑗 − 𝛼𝛼𝑗𝑗∗)

−𝜀𝜀 ∑𝑖𝑖=1𝑁𝑁 (𝛼𝛼𝑖𝑖 + 𝛼𝛼𝑖𝑖∗) + ∑𝑖𝑖=1𝑁𝑁 𝑦𝑦𝑖𝑖 𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗

s.t. ∑𝑖𝑖=1𝑁𝑁 (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗) = 0 (DLSSVR)
0 ≤ 𝛼𝛼𝑖𝑖 + 𝛼𝛼𝑖𝑖∗ ≤ 𝐶𝐶,𝛼𝛼𝑖𝑖 ≥ 0,𝛼𝛼𝑖𝑖∗ ≥ 0, 𝑖𝑖 = 1, … ,𝑁𝑁

*Depending on 𝑦𝑦𝑖𝑖 > 𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏, or 𝑦𝑦𝑖𝑖 < 𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏, at least
one of 𝛼𝛼𝑖𝑖 or 𝛼𝛼𝑖𝑖∗ = 0. So we have

𝑀𝑀𝑀𝑀𝑀𝑀 − 1
2
∑𝑖𝑖=1𝑁𝑁 ∑𝑗𝑗=1𝑁𝑁 𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗ < 𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗 > (𝛼𝛼𝑗𝑗 − 𝛼𝛼𝑗𝑗∗)

−𝜀𝜀 ∑𝑖𝑖=1𝑁𝑁 (𝛼𝛼𝑖𝑖 + 𝛼𝛼𝑖𝑖∗) + ∑𝑖𝑖=1𝑁𝑁 𝑦𝑦𝑖𝑖 𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗

s.t. ∑𝑖𝑖=1𝑁𝑁 (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗) = 0 (DLSSVR)
0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶, 0 ≤ 𝛼𝛼𝑖𝑖∗ ≤ 𝐶𝐶, 𝑖𝑖 = 1, … ,𝑁𝑁



Dual soft support vector regression -DLSSVR
• Observations:

1. (DLSSVR) is a convex quadratic program with 2𝑁𝑁
bounded variables and 1 linear equality constraint.

2. (DLSSVR) is independent of the size of 𝑀𝑀, which
is absolved in the inner product  of
(𝒙𝒙𝑖𝑖)𝑇𝑇𝒙𝒙𝑗𝑗 =< 𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗 >.



DLSSVR
• Dual-to-primal conversion:
• KKT (iii) say that 

𝛻𝛻𝒘𝒘𝐿𝐿 = 𝒘𝒘−∑𝑖𝑖=1𝑁𝑁 𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗ 𝒙𝒙𝑖𝑖 = 0.
Hence,

𝒘𝒘 = ∑𝑖𝑖=1𝑁𝑁 𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗ 𝒙𝒙𝑖𝑖 and 

𝑓𝑓 𝒙𝒙 = ∑𝑖𝑖=1𝑁𝑁 𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗ < 𝒙𝒙𝑖𝑖, 𝒙𝒙 > + 𝑏𝑏

* This is called a “support vector expansion” of 𝑓𝑓 𝒙𝒙 .

* What is 𝑏𝑏 ?



DLSSVR
• KKT conditions:  Complementary slackness:

(vi) 𝛼𝛼𝑖𝑖 𝜀𝜀 + 𝜉𝜉𝑖𝑖 − 𝑦𝑦𝑖𝑖 + 𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏 = 0
(vii) 𝛼𝛼𝑖𝑖∗ 𝜀𝜀 + 𝜉𝜉𝑖𝑖 + 𝑦𝑦𝑖𝑖 − 𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 − 𝑏𝑏 = 0
(viii) 𝜂𝜂𝑖𝑖𝜉𝜉𝑖𝑖 = (𝐶𝐶 − (𝛼𝛼𝑖𝑖+𝛼𝛼𝑖𝑖∗)) 𝜉𝜉𝑖𝑖 = 0

Observations:
1. Depend on 𝑦𝑦𝑖𝑖 > 𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏, or 𝑦𝑦𝑖𝑖 < 𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏, 

at least one of 𝛼𝛼𝑖𝑖 or 𝛼𝛼𝑖𝑖∗ = 0.
2. When data-point 𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖 is in the tube

𝑦𝑦𝑖𝑖 − 𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏 < 𝜀𝜀 ⇒ 𝛼𝛼𝑖𝑖 = 0 and 𝛼𝛼𝑖𝑖∗ = 0.



DLSSVR
• KKT conditions:  Complementary slackness:

(vi) 𝛼𝛼𝑖𝑖 𝜀𝜀 + 𝜉𝜉𝑖𝑖 − 𝑦𝑦𝑖𝑖 + 𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏 = 0
(vii) 𝛼𝛼𝑖𝑖∗ 𝜀𝜀 + 𝜉𝜉𝑖𝑖 + 𝑦𝑦𝑖𝑖 − 𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 − 𝑏𝑏 = 0
(viii) 𝜂𝜂𝑖𝑖𝜉𝜉𝑖𝑖 = (𝐶𝐶 − (𝛼𝛼𝑖𝑖+𝛼𝛼𝑖𝑖∗)) 𝜉𝜉𝑖𝑖 = 0

Observations:
3. When data-point  𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖 is outside of the tube, 

𝑦𝑦𝑖𝑖 − 𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏 > 𝜀𝜀 ⇒ 𝜉𝜉𝑖𝑖 > 0 ⇒ 𝛼𝛼𝑖𝑖 = 𝐶𝐶 or 𝛼𝛼𝑖𝑖∗ = 𝐶𝐶.
4. 𝛼𝛼𝑖𝑖 ∈ (0,𝐶𝐶)  or 𝛼𝛼𝑖𝑖∗ ∈ (0,𝐶𝐶) happens only when 𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖 lies on the tube

𝑦𝑦𝑖𝑖 − 𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏 = 𝜀𝜀
⇒ either 𝑦𝑦𝑖𝑖 − (𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏) = 𝜀𝜀 ⇒ 𝑏𝑏 = 𝜀𝜀 − 𝑦𝑦𝑖𝑖 + 𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 , when 𝛼𝛼𝑖𝑖 ∈ (0,𝐶𝐶)

or 𝑦𝑦𝑖𝑖 − (𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 + 𝑏𝑏) = −𝜀𝜀 ⇒ 𝑏𝑏 = −𝜀𝜀 − 𝑦𝑦𝑖𝑖 + 𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 , when 𝛼𝛼𝑖𝑖∗ ∈ (0,𝐶𝐶) 
5. Supporting vectors are indeed sparse!



DLSSVR
• Dual-to-primal conversion:
• KKT (iii) say that 

𝛻𝛻𝒘𝒘𝐿𝐿 = 𝒘𝒘−∑𝑖𝑖=1𝑁𝑁 𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗ 𝒙𝒙𝑖𝑖 = 0.
Hence,

𝒘𝒘 = ∑𝑖𝑖=1𝑁𝑁 𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗ 𝒙𝒙𝑖𝑖

𝑏𝑏 = 𝜀𝜀−𝑦𝑦𝑖𝑖+𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖, if 𝛼𝛼𝑖𝑖 ∈(0,𝐶𝐶)
−𝜀𝜀−𝑦𝑦𝑖𝑖+𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖, if 𝛼𝛼𝑖𝑖∗ ∈(0,𝐶𝐶)

and DLSSVR prediction is

𝑓𝑓 𝒙𝒙 = ∑𝑖𝑖=1𝑁𝑁 𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗ < 𝒙𝒙𝑖𝑖, 𝒙𝒙 > + 𝑏𝑏



SVM-based nonlinear regression 
• From linear to nonlinear regression 



Kernel-based linear soft SVR 
• Use a feature map 𝜙𝜙 ⋅ ∶ ℝ𝑛𝑛 → ℝ𝑙𝑙 (𝑙𝑙 ≥ 𝑀𝑀) to transform the 

problem to a higher dimensional space for linear 
separability.

• Primal model: (For a given 𝐶𝐶 > 0)

𝑀𝑀𝑖𝑖𝑀𝑀 1
2
𝒘𝒘 2

2 + 𝐶𝐶 ∑𝑖𝑖=1𝑁𝑁 𝜉𝜉𝑖𝑖
s.t. 𝑦𝑦𝑖𝑖 − 𝒘𝒘𝑇𝑇𝜙𝜙(𝒙𝒙𝑖𝑖) − 𝑏𝑏 ≤ 𝜀𝜀 + 𝜉𝜉𝑖𝑖 , 𝑖𝑖 = 1, … ,𝑁𝑁 (KLSSVR)

𝑦𝑦𝑖𝑖 − 𝒘𝒘𝑇𝑇𝜙𝜙(𝒙𝒙𝑖𝑖) − 𝑏𝑏 ≥ −𝜀𝜀 − 𝜉𝜉𝑖𝑖, 𝑖𝑖 = 1, … ,𝑁𝑁
𝒘𝒘 ∈ ℝ𝑙𝑙 , 𝑏𝑏 ∈ ℝ, 𝝃𝝃 ∈ ℝ+

𝑁𝑁

* Dimensionality changes from 𝑀𝑀 to 𝑙𝑙.



Dual kernel-based linear soft support vector regression
• Dual model:

𝑀𝑀𝑀𝑀𝑀𝑀 − 1
2
∑𝑖𝑖=1𝑁𝑁 ∑𝑗𝑗=1𝑁𝑁 𝛼𝛼𝑖𝑖 −𝛼𝛼𝑖𝑖∗ < 𝜙𝜙(𝒙𝒙𝑖𝑖),𝜙𝜙(𝒙𝒙𝑗𝑗) > (𝛼𝛼𝑗𝑗 − 𝛼𝛼𝑗𝑗∗)

−𝜀𝜀 ∑𝑖𝑖=1𝑁𝑁 (𝛼𝛼𝑖𝑖 + 𝛼𝛼𝑖𝑖∗) + ∑𝑖𝑖=1𝑁𝑁 𝑦𝑦𝑖𝑖 𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗

s.t. ∑𝑖𝑖=1𝑁𝑁 (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗) = 0 (DKLSSVR)
0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶, 0 ≤ 𝛼𝛼𝑖𝑖∗ ≤ 𝐶𝐶, 𝑖𝑖 = 1, … ,𝑁𝑁

*(DKLSSVR) is a convex quadratic program with 2𝑁𝑁
bounded variables and 1 linear equality constraint.

*(DKLSSVR) is independent of the size of 𝑀𝑀, which
is absolved in the inner product  of
𝜙𝜙(𝒙𝒙𝑖𝑖)𝑇𝑇𝜙𝜙(𝒙𝒙𝑗𝑗) =< 𝜙𝜙(𝒙𝒙𝑖𝑖),𝜙𝜙(𝒙𝒙𝑗𝑗) >.



Kernel-based linear soft SVR
• Knowing an admissible kernel (Mercer’s condition)

𝐾𝐾 = (𝑘𝑘 𝑀𝑀, 𝑀𝑀′ ) with 𝑘𝑘 𝑀𝑀, 𝑀𝑀′ = 𝜙𝜙 𝑀𝑀 𝑇𝑇𝜙𝜙 𝑀𝑀′ rather
than the feature mapping 𝜙𝜙 𝑀𝑀 explicitly, we have
a kernel-based LSSVR for nonlinear regression:

𝑀𝑀𝑀𝑀𝑀𝑀 − 1
2
∑𝑖𝑖=1𝑁𝑁 ∑𝑗𝑗=1𝑁𝑁 𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗ 𝑘𝑘(𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗) (𝛼𝛼𝑗𝑗 − 𝛼𝛼𝑗𝑗∗)

−𝜀𝜀 ∑𝑖𝑖=1𝑁𝑁 (𝛼𝛼𝑖𝑖 + 𝛼𝛼𝑖𝑖∗) + ∑𝑖𝑖=1𝑁𝑁 𝑦𝑦𝑖𝑖 𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗

s.t. ∑𝑖𝑖=1𝑁𝑁 (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗) = 0 (DKLSSVR)
0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶, 0 ≤ 𝛼𝛼𝑖𝑖∗ ≤ 𝐶𝐶, 𝑖𝑖 = 1, … ,𝑁𝑁



DLSSVR vs. DKLSSVR
• Same structure, same complexity:

𝑀𝑀𝑀𝑀𝑀𝑀 − 1
2
∑𝑖𝑖=1𝑁𝑁 ∑𝑗𝑗=1𝑁𝑁 𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗ 𝑘𝑘(𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗) (𝛼𝛼𝑗𝑗 − 𝛼𝛼𝑗𝑗∗)

−𝜀𝜀 ∑𝑖𝑖=1𝑁𝑁 (𝛼𝛼𝑖𝑖 + 𝛼𝛼𝑖𝑖∗) + ∑𝑖𝑖=1𝑁𝑁 𝑦𝑦𝑖𝑖 𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗

s.t. ∑𝑖𝑖=1𝑁𝑁 (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗) = 0 (DKLSSVR)
0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶, 0 ≤ 𝛼𝛼𝑖𝑖∗ ≤ 𝐶𝐶, 𝑖𝑖 = 1, … ,𝑁𝑁

𝑀𝑀𝑀𝑀𝑀𝑀 − 1
2
∑𝑖𝑖=1𝑁𝑁 ∑𝑗𝑗=1𝑁𝑁 𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗ < 𝒙𝒙𝑖𝑖 ,𝒙𝒙𝑗𝑗 > (𝛼𝛼𝑗𝑗 − 𝛼𝛼𝑗𝑗∗)

−𝜀𝜀 ∑𝑖𝑖=1𝑁𝑁 (𝛼𝛼𝑖𝑖 + 𝛼𝛼𝑖𝑖∗) + ∑𝑖𝑖=1𝑁𝑁 𝑦𝑦𝑖𝑖 𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗

s.t. ∑𝑖𝑖=1𝑁𝑁 (𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗) = 0 (DLSSVR)
0 ≤ 𝛼𝛼𝑖𝑖 ≤ 𝐶𝐶, 0 ≤ 𝛼𝛼𝑖𝑖∗ ≤ 𝐶𝐶, 𝑖𝑖 = 1, … ,𝑁𝑁



Support vector expansion of KLSSVR

• For KLSSVR
𝒘𝒘 = ∑𝑖𝑖=1𝑁𝑁 𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗ 𝜙𝜙(𝒙𝒙𝑖𝑖)

𝑏𝑏 = �
𝜀𝜀 − 𝑦𝑦𝑖𝑖 + 𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 , if 𝛼𝛼𝑖𝑖 ∈ (0,𝐶𝐶)
−𝜀𝜀 − 𝑦𝑦𝑖𝑖 + 𝒘𝒘𝑇𝑇𝒙𝒙𝑖𝑖 , if 𝛼𝛼𝑖𝑖∗ ∈ (0,𝐶𝐶)

KLSSVR Prediction:
𝑓𝑓 𝒙𝒙 = ∑𝑖𝑖=1𝑁𝑁 𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗ 𝜙𝜙(𝒙𝒙𝑖𝑖)𝑻𝑻𝜙𝜙(𝒙𝒙) + 𝑏𝑏

or
𝑓𝑓 𝒙𝒙 = ∑𝑖𝑖=1𝑁𝑁 𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖∗ 𝑘𝑘(𝒙𝒙𝑖𝑖 ,𝒙𝒙) + 𝑏𝑏
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Background knowledge
Load forecasts are widely used across all segments of various 
industries. Accurate load forecasting is crucial to the excellence of 
system operations and planning. 

• Electric load forecasting is an essential part of business operations in 
the energy industry. Under-forecasting may cause the undesired 
“blackouts” while over-forecasting usually leads to an economic 
losses. 

• Various load forecasting methods and techniques have been adopted 
and tested. 

• With the growing concerns about cybersecurity including malicious 
data manipulations, an emerging topic is to develop robust load 
forecasting models. 

• We report a series of works building robust SVR models to forecast 
the electricity demand under data integrity attacks. 



Electricity Networks



Power Grids
• An electrical grid is an interconnected network 

for electricity delivery from producers to consumers. 
Electrical grids vary in size and can cover whole countries 
or continents. It consists of

- power stations often located near energy and away
from heavily populated areas;

- electrical substations to step voltage up or down;
- electric power transmission to carry power long

distances;
- electric power distribution to individual customers, 

where voltage is stepped down again to the required
service voltage(s).



Power Grids 
https://en.wikipedia.org/wiki/Smart_grid
Evolution:

Producers: large to small

Market: central to distributed

Transmission: fixed to regional

Distribution: one-way to two-way

Customers: passive to active

Characteristics of a traditional system (left) versus the smart grid (right)



Smart Grids

• The smart grid would be an enhancement of the 20th 
century electrical grid, using two-way communications 
and distributed “intelligent devices”. Two-way flows of 
electricity and information could improve the delivery 
network. 

• Research and practice are mainly focused on three 
systems of a smart grid – the infrastructure system, the 
management system, and the protection system.



Electric Load Forecast
The electric load forecasting (ELF) is indispensable 
procedure for the planning of power system industry, which 
plays an essential role in the scheduling of electricity and 
the management of the power system (PSM).



Electric Load Forecasting
• Forecasting horizons:

- Long-term, intermediate-term, short-term
- Yearly, monthly, weekly, hourly, per minute, per second  

• Factors: time, weather, social behavior, etc.             
and compounding factors



Electric load forecasting factors

Image: 
energycentral.com

• Vanilla model has a total of 289 variables, which works effectively for electric 
load forecasting, (Hong & Fan, 2016; Hong, Pinson, & Fan, 2014; Hong, 
Wilson, & Xie, 2014).



Electric load forecasting methods
• Available models: 

- using statistical or AI techniques on historical data of 
load and its affecting factors:
(1) AI methods (ANN, Fuzzy Logic)

(2) Parametric mathematical models
- regression methods
- time-series prediction methods
- gray dynamic methods 



Commonly used electric load forecasting models

• Multiple linear regression (MLR) (Papalexopoulos et al., 
1990)

• Artificial neural networks (ANN) (Hippert et al., 2001)
• Support vector regression (SVR) (Chen et al., 2004)
• Fuzzy interaction regression (FIR) (Hong & Wang, 2014) 

• Expected performance: 𝑀𝑀𝑏𝑏𝑎𝑎𝑎𝑎𝑖𝑖 95% 𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑀𝑀𝑎𝑎𝑦𝑦 for 
industrial practice



Multiple linear regression (MLR)

• Basic MLR Model: 

Data {(𝒙𝒙𝑖𝑖 ,𝑦𝑦𝑖𝑖)}, 𝒙𝒙𝑖𝑖 ∈ ℝ289, 𝑦𝑦𝑖𝑖 ∈ ℝ+,𝑀𝑀 = # data points



Support vector regression (SVR)

• Basic SVR Model: (𝐶𝐶, 𝛿𝛿 ≥ 0 are given)



Artificial neural network (ANN)

• Basic ANN Model:



Fuzzy interaction regression (FIR)
• Basic FIR Model: (ℎ is a given parameter)



Cyber attacks

• A cyberattack is any offensive maneuver that targets 
computer information systems, computer networks, 
infrastructures, or personal computer devices. Wikipedia

https://en.wikipedia.org/wiki/Cyberattack


Cyber Attacks
• Cybersecurity currently presents a serious challenge to 

the resilience of power grids (Ericsson, 2010).
• The cyber attack on Ukraine’s power grid (Perez, 2016), 

for instance, was a real threat to people’s daily lives. 
Several other cyber attacks on power systems were 
discussed in (Hong & Hofmann, 2021). 

• Data integrity attack is one form of cyber attacks. Hackers 
may access the supposedly protected data sets and inject 
misleading information to the historical load in a way such 
that the manipulations may not be easily detected by 
conventional operational practices.



Load Forecasting under data integrity attacks
• Important issues:

- Deadly operational cost: 
Under-capacity - Brownout, Blackout

- Unnecessary economic loss: 
Over-capacity

• Challenge: Robustness

• Question: How good are the commonly used electric load 
forecasting models?



Benchmarking Dataset
● GEFCom2012 (Hong et al., 2014): a widely used 

Electric Load Forecasting dataset.
- Includes 4.5 years of hourly load and temperature

information for a US utility with 21 zones (𝑍𝑍1, . . . ,𝑍𝑍21).
- The load in 𝑍𝑍21 is the sum of the other 20 zones.
- Data of 3 full calendar years (2005–2007) are taken for an 

empirical study. 
- Data of (2005 and 2006) are used as the training data. 
- Data of (2007) is used as the test data for benchmarking.



Computational Experiments
• In each experiment:

- 𝑘𝑘𝑘 of data points are randomly selected
- Load of each selected point is injected a noise
(increase or decrease) by 𝑝𝑝𝑘.

- 𝑝𝑝 is specified by a
-- number,
-- normal distribution 𝑁𝑁 𝜇𝜇,𝜎𝜎2 , or
-- uniform distribution 𝑈𝑈 𝑀𝑀, 𝑏𝑏 = (𝜇𝜇 − 𝜎𝜎, 𝜇𝜇 + 𝜎𝜎)

• Major metric: 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = mean absolute % error
𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀 = root mean square error



Implementation 
• Computational platform:



Benchmarking w/o data integrity attack
• Baseline: 𝑀𝑀𝐿𝐿𝑅𝑅 ≥ 𝑅𝑅𝑆𝑆𝑅𝑅 ≫ 𝐹𝐹𝐹𝐹𝑅𝑅 ≥ 𝑀𝑀𝑁𝑁𝑁𝑁



Benchmarking with 𝑵𝑵 𝝁𝝁,𝝈𝝈𝟐𝟐 attack
• Table 4



Benchmark with 𝑼𝑼(𝝁𝝁−𝝈𝝈,𝝁𝝁+ 𝝈𝝈) attack
• Table 5



Lessons learned 
• 1. Without data integrity attack:

𝑀𝑀𝐿𝐿𝑅𝑅 ≥ 𝑅𝑅𝑆𝑆𝑅𝑅 ≫ 𝐹𝐹𝐹𝐹𝑅𝑅 > 𝑀𝑀𝑁𝑁𝑁𝑁
With data integrity attack 
𝑅𝑅𝑆𝑆𝑅𝑅 ≥ 𝑀𝑀𝐿𝐿𝑅𝑅 ≫ 𝑀𝑀𝑁𝑁𝑁𝑁 > 𝐹𝐹𝐹𝐹𝑅𝑅

• 2. All 4 representative load forecasting models are 
working well, but they fail to 
generate robust forecasts (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 > 10%) under 
severe data integrity attack (𝑘𝑘𝑘 > 30%).

• 3. There is a need for more robust models for electric 
load forecasting.



Enhancing robustness
• Two basic ideas for investigation:

(1) weighting the 𝑙𝑙2-norm of all residuals; 
(2) changing the penalty function of errors from

𝑙𝑙2-norm to 𝑙𝑙1-norm. 

• Three robust regression models for load forecasting: 
- two are based on iteratively re-weighted least squares
(IRLS);

- one is 𝑙𝑙1-norm based penalty.



Robust electric load foresting models
• 𝐹𝐹𝑅𝑅𝐿𝐿𝑅𝑅𝑏𝑏𝑖𝑖𝑏𝑏𝑀𝑀𝑀𝑀𝑎𝑎 𝐹𝐹𝑅𝑅𝐿𝐿𝑅𝑅log

• piecewise “bi-square” weight function

• continuous “logistic” weight function



Robust electric load forecasting models
• 𝑙𝑙1-regression model (𝐿𝐿1)



Implementations
• Six models for benchmarking



Benchmarking w/o data integrity attack



Benchmarking with data integrity attack
• Similar results for attack targeting economic loss



Benchmarking with data integrity attack



Lessons learned
• Both idea of “weighted loss” and “𝑙𝑙1 norm“ work.

• Question: How about developing a robust SVR ?



Robust support vector regression

• Linear SVR 
• Linear SVR with Kernel
• Quadratic surface SVR (QSSVR)
• Robust weighted QSSVR



Robust SVR for electric load forecating
• Linear SVR (Chen et al. 2004)

• SVR with kernel 



Robust QSSVR for electric load forecasting

• Quadratic surface SVR model (Luo et al., 2021)

• Theoretical development: dual QSSVR, optimality 
analysis

• Solution method development



Robust SVR for electric load forecasting
• Weighted quadratic surface SVR (WQSSVR) (Luo et al., 

2021)

• Weights



Benchmarking w/o data integrity attack
• WQSSVR is picking up!



Benchmarking with attacks targeting economic losses

• 𝑁𝑁 𝜇𝜇,𝜎𝜎2



An example of attacks targeting economic losses



Benchmarking with attacks targeting system blackouts
• 𝑘𝑘𝑘 = 70%
• 𝑈𝑈(−0.8,0.2)



Lessons learned
• In our experiments, robust load forecasting models (𝐿𝐿1, 

IRLS, and SVR with Gaussian kernel) may fail to provide 
reliable load forecasts under large-scale data integrity 
attacks (for 𝑘𝑘% ≥ 40%).

• WQSSVR model is capable of producing more accurate 
and robust load forecasts. 

• When more data points (e.g., 𝑘𝑘𝑘 ≥ 70%) of whole data 
set) are attacked with a large mean of perturbation 
magnitude, the WQSSVR model demonstrates much 
stronger robustness than other.  

• Better robust electric load forecasting is needed for facing 
various types of data integrity attacks.
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