SUPPORT VECTOR MACHINES & NEURAL NETWORKS

LECTURE 7 – SUPPORT VECTOR MACHINES PART # IV

A. Bi-classification

History, LSVM, Approximate LSVM, Soft LSVM, Kernel-based linear SVM, nonlinear SVM

B. Multi-classification

OVO, OVA, Twin SVM

C. Prediction

Support Vector Regression (SVR)

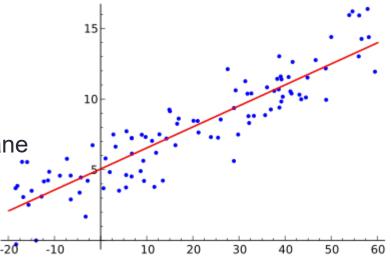
*Copyright: Professor Shu-Cherng Fang of NCSU-ISE

Regression

- Linear regression:
 - a model that assumes a linear relationship between the input variables (*x*) and the single output variable (*y*) such that *y* can be calculated from a linear combination of the input variables (*x*).

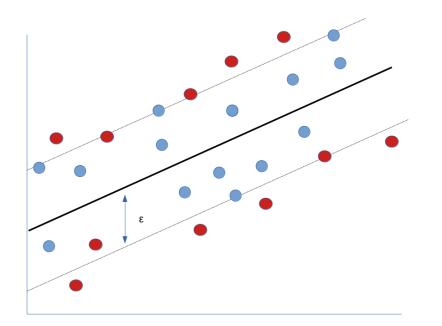
$$\mathbf{y} = \mathbf{w}^T \mathbf{x} + b + \varepsilon$$

Fit the data to a supporting hyperplane with the minimum mean squared error.



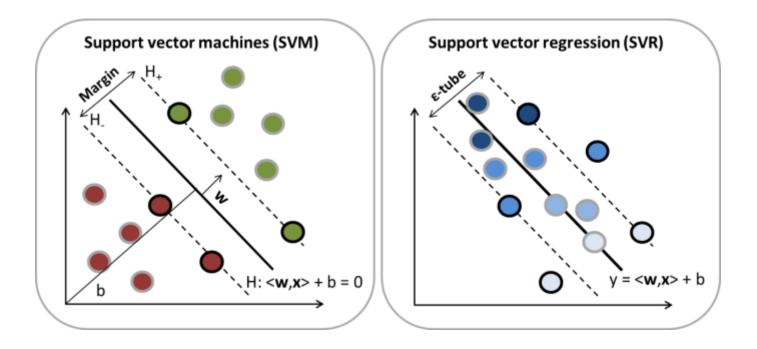
Support vector regression (SVR)

- Basic idea:
 - Find a hyperplane centering around the data by boxing as many data points as possible in a given tube around the hyperplane.



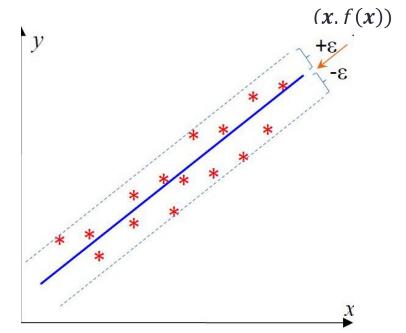
Support vector machines: classification vs. regression

 SVM: data-points in Rⁿ with class babel y separate data-points apart SVR: data-points in \mathbb{R}^{n+1} with data value *y* box data-points in a tube



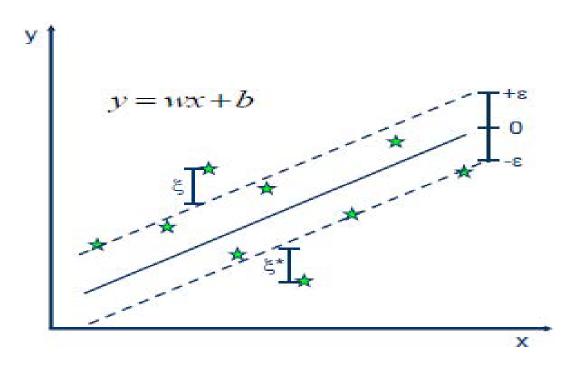
Linear support vector regression

- Problem settings:
 - Dataset { $(x^i, y_i) \in \mathbb{R}^n \times \mathbb{R} \mid i = 1, 2, ..., N$ } of *N* data points
 - tube tolerance $\varepsilon > 0$
- Aim: to find affine map $f(x) = w^T x + b$ with wide margin such that $|y_i - f(x^i)| < \varepsilon, i = 1, ..., N$



Observation

- Question: How big the box tolerance ε should be?
 - When ε (> 0) is too small, we may not be able to box all data-points in the tube.

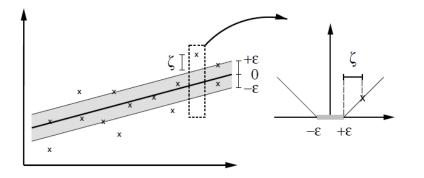


Linear soft support vector regression

• Primal model: (For a given C > 0)

$$Min \quad \frac{1}{2} \|\boldsymbol{w}\|_{2}^{2} + C \sum_{i=1}^{N} \boldsymbol{\xi}_{i}$$

s.t.
$$y_{i} - \boldsymbol{w}^{T} \boldsymbol{x}^{i} - \boldsymbol{b} \leq \varepsilon + \boldsymbol{\xi}_{i}, \ i = 1, \dots, N \text{ (LSSVR)}$$
$$y_{i} - \boldsymbol{w}^{T} \boldsymbol{x}^{i} - \boldsymbol{b} \geq -\varepsilon - \boldsymbol{\xi}_{i}, \ i = 1, \dots, N$$
$$\boldsymbol{w} \in \mathbb{R}^{n}, \ \boldsymbol{b} \in \mathbb{R}, \ \boldsymbol{\xi} \in \mathbb{R}^{N}_{+}$$



soft margin with ε – *insensitive* loss function

Linear soft SVR - LSSVR

- (LSSVR) is a convex quadratic program with *n* + 1 free variables, *N* non-negative variables, and 2*N* linear inequality constraints.
- 2. (LSSVR) is always feasible.
- 3. Who are supporting vectors?
- 4. Any dual information?

Dual LSSVR - DLSSVR

Lagragian

$$L(\boldsymbol{w}, \boldsymbol{b}, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\alpha}^*, \boldsymbol{\eta}) = \frac{1}{2} \|\boldsymbol{w}\|_2^2 + C \sum_{i=1}^N \boldsymbol{\xi}_i$$
$$- \sum_{i=1}^N \eta_i \boldsymbol{\xi}_i - \sum_{i=1}^N \boldsymbol{\alpha}_i \left(\varepsilon + \boldsymbol{\xi}_i - y_i + \boldsymbol{w}^T \boldsymbol{x}^i + \boldsymbol{b}\right)$$
$$- \sum_{i=1}^N \boldsymbol{\alpha}_i^* \left(\varepsilon + \boldsymbol{\xi}_i + y_i - \boldsymbol{w}^T \boldsymbol{x}^i - \boldsymbol{b}\right)$$

KKT conditions

- Primal & dual feasibility

(i) $\alpha_i, \alpha_i^*, \eta_i \ge 0, i = 1, ..., N$; (ii) $\varepsilon + \xi_i - y_i + \mathbf{w}^T \mathbf{x}^i + \mathbf{b} \ge 0$; $\varepsilon + \xi_i + y_i - \mathbf{w}^T \mathbf{x}^i - \mathbf{b} \ge 0$;

Dual LSSVR - DLSSVR

Lagragian

$$L(\boldsymbol{w}, \boldsymbol{b}, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\alpha}^*, \boldsymbol{\eta}) = \frac{1}{2} \|\boldsymbol{w}\|_2^2 + C \sum_{i=1}^N \boldsymbol{\xi}_i$$
$$- \sum_{i=1}^N \eta_i \boldsymbol{\xi}_i - \sum_{i=1}^N \boldsymbol{\alpha}_i \left(\varepsilon + \boldsymbol{\xi}_i - y_i + \boldsymbol{w}^T \boldsymbol{x}^i + \boldsymbol{b}\right)$$
$$- \sum_{i=1}^N \boldsymbol{\alpha}_i^* \left(\varepsilon + \boldsymbol{\xi}_i + y_i - \boldsymbol{w}^T \boldsymbol{x}^i - \boldsymbol{b}\right)$$

KKT conditions

Stationarity (iii) $\nabla_{\mathbf{w}} L = \mathbf{w} - \sum_{i=1}^{N} (\alpha_i - \alpha_i^*) \mathbf{x}^i = 0;$ (iv) $\nabla_b L = \sum_{i=1}^{N} (\alpha_i - \alpha_i^*) = 0;$ (v) $\nabla_{\xi_i} L = C - \eta_i - (\alpha_i + \alpha_i^*) = 0;$ $\Rightarrow \eta_i = C - (\alpha_i + \alpha_i^*) \ge 0 \text{ and } 0 \le \alpha_i + \alpha_i^* \le C$

Dual soft support vector regression -DLSSVR

• Dual model:

$$Max \quad -\frac{1}{2}\sum_{i=1}^{N}\sum_{j=1}^{N}(\alpha_{i}-\alpha_{i}^{*}) < x^{i}, x^{j} > (\alpha_{j}-\alpha_{j}^{*})$$
$$-\varepsilon \sum_{i=1}^{N}(\alpha_{i}+\alpha_{i}^{*}) + \sum_{i=1}^{N}y_{i}(\alpha_{i}-\alpha_{i}^{*})$$
s.t.
$$\sum_{i=1}^{N}(\alpha_{i}-\alpha_{i}^{*}) = 0 \qquad (\text{DLSSVR})$$
$$0 \le \alpha_{i}+\alpha_{i}^{*} \le C, \alpha_{i} \ge 0, \alpha_{i}^{*} \ge 0, i = 1, ..., N$$

Depending on $y_i > w^T x^i + b$, or $y_i < w^T x^i + b$, at least one of α_i or $\alpha_i^ = 0$. So we have

$$\begin{aligned} Max & -\frac{1}{2}\sum_{i=1}^{N}\sum_{j=1}^{N}(\alpha_{i}-\alpha_{i}^{*}) < x^{i}, x^{j} > (\alpha_{j}-\alpha_{j}^{*}) \\ & -\varepsilon\sum_{i=1}^{N}(\alpha_{i}+\alpha_{i}^{*}) + \sum_{i=1}^{N}y_{i}(\alpha_{i}-\alpha_{i}^{*}) \\ \text{s.t.} & \sum_{i=1}^{N}(\alpha_{i}-\alpha_{i}^{*}) = 0 \qquad (\text{DLSSVR}) \\ & 0 \leq \alpha_{i} \leq C, \ 0 \leq \alpha_{i}^{*} \leq C, i = 1, \dots, N \end{aligned}$$

Dual soft support vector regression -DLSSVRObservations:

- 1. (DLSSVR) is a convex quadratic program with 2N bounded variables and 1 linear equality constraint.
- 2. (DLSSVR) is independent of the size of *n*, which is absolved in the inner product of $(x^i)^T x^j = \langle x^i, x^j \rangle$.

- Dual-to-primal conversion:
- KKT (iii) say that

$$\nabla_{\mathbf{w}}L = \mathbf{w} - \sum_{i=1}^{N} (\alpha_{i} - \alpha_{i}^{*}) \mathbf{x}^{i} = 0.$$

Hence,

$$\mathbf{w} = \sum_{i=1}^{N} (\alpha_i - \alpha_i^*) x^i$$
 and

$$f(\mathbf{x}) = \sum_{i=1}^{N} (\alpha_i - \alpha_i^*) < \mathbf{x}^i, \, \mathbf{x} > + b$$

* This is called a "support vector expansion" of f(x).

* What is *b* ?

• KKT conditions: Complementary slackness:

(vi)
$$\alpha_i (\varepsilon + \xi_i - y_i + \mathbf{w}^T x^i + b) = 0$$

(vii) $\alpha_i^* (\varepsilon + \xi_i + y_i - \mathbf{w}^T x^i - b) = 0$
(viii) $\eta_i \xi_i = (C - (\alpha_i + \alpha_i^*)) \xi_i = 0$

Observations:

- 1. Depend on $y_i > w^T x^i + b$, or $y_i < w^T x^i + b$, at least one of α_i or $\alpha_i^* = 0$.
- 2. When data-point (x^i, y_i) is in the tube

$$|y_i - (w^T x^i + b)| < \varepsilon \implies \alpha_i = 0 \text{ and } \alpha_i^* = 0.$$

• KKT conditions: Complementary slackness:

(vi)
$$\alpha_i (\varepsilon + \xi_i - y_i + \mathbf{w}^T x^i + b) = 0$$

(vii) $\alpha_i^* (\varepsilon + \xi_i + y_i - \mathbf{w}^T x^i - b) = 0$
(viii) $\eta_i \xi_i = (C - (\alpha_i + \alpha_i^*)) \xi_i = 0$

Observations:

3. When data-point (x^i, y_i) is outside of the tube,

$$|y_i - (w^T x^i + b)| > \varepsilon \Rightarrow \xi_i > 0 \Rightarrow \alpha_i = C \text{ or } \alpha_i^* = C.$$

4. $\alpha_i \in (0, C)$ or $\alpha_i^* \in (0, C)$ happens only when (x^i, y_i) lies on the tube $|y_i - (w^T x^i + b)| = \varepsilon$

 $\Rightarrow \text{ either } y_i - (w^T x^i + b) = \varepsilon \Rightarrow b = \varepsilon - y_i + w^T x^i, \text{ when } \alpha_i \in (0, C)$ or $y_i - (w^T x^i + b) = -\varepsilon \Rightarrow b = -\varepsilon - y_i + w^T x^i, \text{ when } \alpha_i^* \in (0, C)$

5. Supporting vectors are indeed sparse!

- Dual-to-primal conversion:
- KKT (iii) say that

$$\nabla_{\mathbf{w}}L = \mathbf{w} - \sum_{i=1}^{N} (\alpha_{i} - \alpha_{i}^{*}) \mathbf{x}^{i} = 0.$$

Hence,

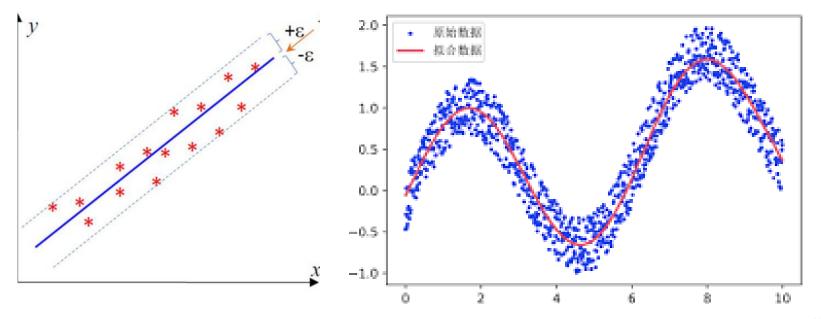
$$\mathbf{w} = \sum_{i=1}^{N} (\alpha_i - \alpha_i^*) \mathbf{x}^i$$
$$b = \begin{pmatrix} \varepsilon - y_i + \mathbf{w}^T \mathbf{x}^i, & \text{if } \alpha_i \in (0, C) \\ -\varepsilon - y_i + \mathbf{w}^T \mathbf{x}^i, & \text{if } \alpha_i^* \in (0, C) \end{pmatrix}$$

and DLSSVR prediction is

$$f(\mathbf{x}) = \sum_{i=1}^{N} (\alpha_i - \alpha_i^*) < \mathbf{x}^i, \, \mathbf{x} > + \mathbf{b}$$

SVM-based nonlinear regression

From linear to nonlinear regression



C104-946-859-908

Kernel-based linear soft SVR

- Use a *feature map* $\phi(\cdot)$: $\mathbb{R}^n \to \mathbb{R}^l$ $(l \ge n)$ to transform the problem to a higher dimensional space for linear separability.
- Primal model: (For a given C > 0) $Min \quad \frac{1}{2} \|\boldsymbol{w}\|_{2}^{2} + C \sum_{i=1}^{N} \xi_{i}$ s.t. $y_{i} - \boldsymbol{w}^{T} \phi(\boldsymbol{x}^{i}) - b \leq \varepsilon + \xi_{i}, i = 1, ..., N$ (KLSSVR) $y_{i} - \boldsymbol{w}^{T} \phi(\boldsymbol{x}^{i}) - b \geq -\varepsilon - \xi_{i}, i = 1, ..., N$ $\boldsymbol{w} \in \mathbb{R}^{l}, b \in \mathbb{R}, \boldsymbol{\xi} \in \mathbb{R}^{N}_{+}$
 - * Dimensionality changes from n to l.

Dual kernel-based linear soft support vector regression

• Dual model:

$$Max \quad -\frac{1}{2}\sum_{i=1}^{N}\sum_{j=1}^{N}(\alpha_{i}-\alpha_{i}^{*}) < \phi(x^{i}), \phi(x^{j}) > (\alpha_{j}-\alpha_{j}^{*})$$
$$-\varepsilon\sum_{i=1}^{N}(\alpha_{i}+\alpha_{i}^{*}) + \sum_{i=1}^{N}y_{i}(\alpha_{i}-\alpha_{i}^{*})$$
s.t.
$$\sum_{i=1}^{N}(\alpha_{i}-\alpha_{i}^{*}) = 0 \qquad (DKLSSVR)$$
$$0 \le \alpha_{i} \le C, 0 \le \alpha_{i}^{*} \le C, i = 1, ..., N$$

*(DKLSSVR) is a convex quadratic program with 2*N* bounded variables and 1 linear equality constraint. *(DKLSSVR) is independent of the size of *n*, which is absolved in the inner product of $\phi(x^i)^T \phi(x^j) = \langle \phi(x^i), \phi(x^j) \rangle$.

Kernel-based linear soft SVR

• Knowing an admissible kernel (Mercer's condition) K = (k(x, x')) with $k(x, x') = \phi(x)^T \phi(x')$ rather than the feature mapping $\phi(x)$ explicitly, we have a kernel-based LSSVR for nonlinear regression:

$$Max \quad -\frac{1}{2}\sum_{i=1}^{N}\sum_{j=1}^{N}(\alpha_{i} - \alpha_{i}^{*})k(x^{i}, x^{j})(\alpha_{j} - \alpha_{j}^{*})$$
$$-\varepsilon\sum_{i=1}^{N}(\alpha_{i} + \alpha_{i}^{*}) + \sum_{i=1}^{N}y_{i}(\alpha_{i} - \alpha_{i}^{*})$$
s.t.
$$\sum_{i=1}^{N}(\alpha_{i} - \alpha_{i}^{*}) = 0 \qquad (DKLSSVR)$$
$$0 \leq \alpha_{i} \leq C, 0 \leq \alpha_{i}^{*} \leq C, i = 1, ..., N$$

DLSSVR vs. DKLSSVR

• Same structure, same complexity:

$$Max \quad -\frac{1}{2}\sum_{i=1}^{N}\sum_{j=1}^{N}(\alpha_{i} - \alpha_{i}^{*})k(x^{i}, x^{j})(\alpha_{j} - \alpha_{j}^{*})$$
$$-\varepsilon \sum_{i=1}^{N}(\alpha_{i} + \alpha_{i}^{*}) + \sum_{i=1}^{N}y_{i}(\alpha_{i} - \alpha_{i}^{*})$$
s.t.
$$\sum_{i=1}^{N}(\alpha_{i} - \alpha_{i}^{*}) = 0 \qquad (DKLSSVR)$$
$$0 \leq \alpha_{i} \leq C, 0 \leq \alpha_{i}^{*} \leq C, i = 1, ..., N$$

$$Max \quad -\frac{1}{2}\sum_{i=1}^{N}\sum_{j=1}^{N}(\alpha_{i}-\alpha_{i}^{*}) < x^{i}, x^{j} > (\alpha_{j}-\alpha_{j}^{*})$$
$$-\varepsilon\sum_{i=1}^{N}(\alpha_{i}+\alpha_{i}^{*}) + \sum_{i=1}^{N}y_{i}(\alpha_{i}-\alpha_{i}^{*})$$
s.t.
$$\sum_{i=1}^{N}(\alpha_{i}-\alpha_{i}^{*}) = 0 \qquad (\text{DLSSVR})$$
$$0 \le \alpha_{i} \le C, 0 \le \alpha_{i}^{*} \le C, i = 1, ..., N$$

Support vector expansion of KLSSVR

For KLSSVR

$$\mathbf{w} = \sum_{i=1}^{N} (\alpha_i - \alpha_i^*) \phi(\mathbf{x}^i)$$
$$b = \begin{cases} \varepsilon - y_i + \mathbf{w}^T \mathbf{x}^i, \text{ if } \alpha_i \in (0, C) \\ -\varepsilon - y_i + \mathbf{w}^T \mathbf{x}^i, \text{ if } \alpha_i^* \in (0, C) \end{cases}$$

KLSSVR Prediction:

$$f(\mathbf{x}) = \sum_{i=1}^{N} (\alpha_i - \alpha_i^*) \phi(\mathbf{x}^i)^T \phi(\mathbf{x}) + \mathbf{b}$$

or

$$f(\mathbf{x}) = \sum_{i=1}^{N} (\alpha_i - \alpha_i^*) k(\mathbf{x}^i, \mathbf{x}) + \mathbf{b}$$

A case study of electric load forecasting for smart grids

References:

*Co-authors: Jian Luo, Tao Hong, S-C Fang, Zheming Gao

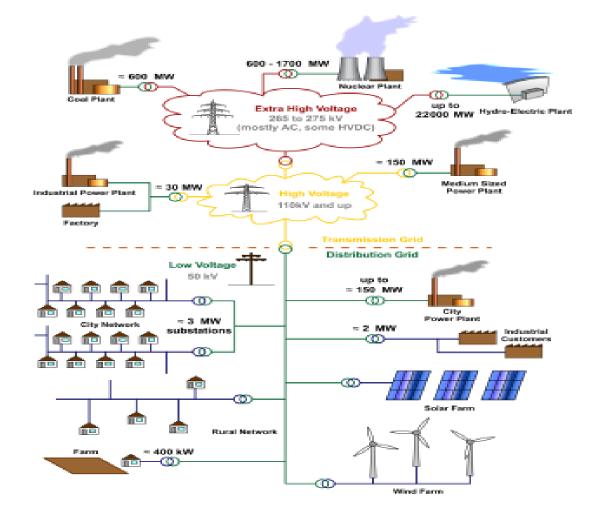
- 1. Benchmarking robustness of load forecasting models under data integrity attacks. International Journal of Forecasting, 2018.
- 2. Robust regression for load forecasting. IEEE Transactions on Smart Grid, 2019.
- A robust support vector regression model for electric load forecasting, International Journal of Forecasting. 2022.

Background knowledge

Load forecasts are widely used across all segments of various industries. Accurate load forecasting is crucial to the excellence of system operations and planning.

- Electric load forecasting is an essential part of business operations in the energy industry. Under-forecasting may cause the undesired "blackouts" while over-forecasting usually leads to an economic losses.
- Various load forecasting methods and techniques have been adopted and tested.
- With the growing concerns about cybersecurity including malicious data manipulations, an emerging topic is to develop robust load forecasting models.
- We report a series of works building robust SVR models to forecast the electricity demand under data integrity attacks.

Electricity Networks



Power Grids

- An electrical grid is an interconnected network for electricity delivery from producers to consumers. Electrical grids vary in size and can cover whole countries or continents. It consists of
 - power stations often located near energy and away from heavily populated areas;
 - electrical substations to step voltage up or down;
 - electric power transmission to carry power long distances;

- electric power distribution to individual customers, where voltage is stepped down again to the required service voltage(s).

Power Grids

https://en.wikipedia.org/wiki/Smart_grid

Evolution:

Characteristics of a traditional system (left) versus the smart grid (right)

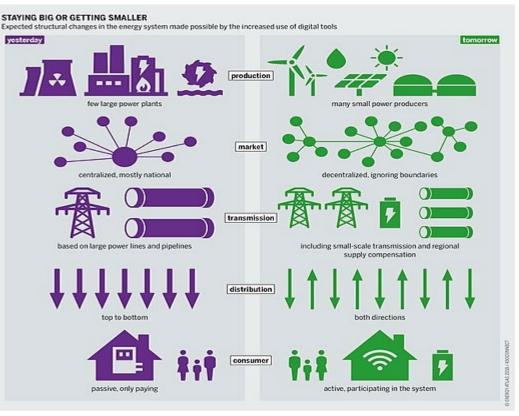
Producers: large to small

Market: central to distributed

Transmission: fixed to regional

Distribution: one-way to two-way

Customers: passive to active

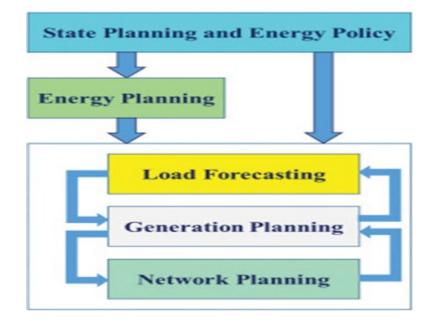


Smart Grids

- The smart grid would be an enhancement of the 20th century electrical grid, using two-way communications and distributed "intelligent devices". Two-way flows of electricity and information could improve the delivery network.
- Research and practice are mainly focused on three systems of a smart grid – the infrastructure system, the management system, and the protection system.

Electric Load Forecast

The electric load forecasting (ELF) is indispensable procedure for the planning of power system industry, which plays an essential role in the scheduling of electricity and the management of the power system (PSM).

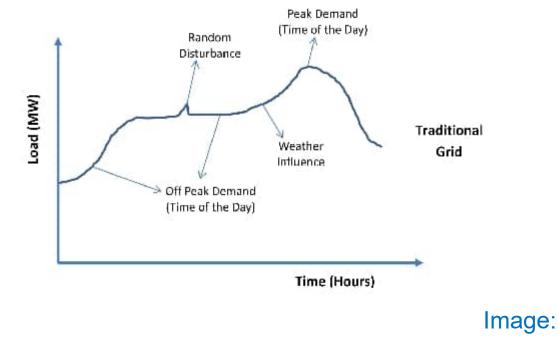


Electric Load Forecasting

- Forecasting horizons:
 - Long-term, intermediate-term, short-term
 - Yearly, monthly, weekly, hourly, per minute, per second

 Factors: time, weather, social behavior, etc. and compounding factors

Electric load forecasting factors



energycentral.com

 Vanilla model has a total of 289 variables, which works effectively for electric load forecasting, (Hong & Fan, 2016; Hong, Pinson, & Fan, 2014; Hong, Wilson, & Xie, 2014).

Electric load forecasting methods

- Available models:
 - using statistical or AI techniques on historical data of load and its affecting factors:
 - (1) AI methods (ANN, Fuzzy Logic)
 - (2) Parametric mathematical models
 - regression methods
 - time-series prediction methods
 - gray dynamic methods

Commonly used electric load forecasting models

- Multiple linear regression (MLR) (Papalexopoulos et al., 1990)
- Artificial neural networks (ANN) (Hippert et al., 2001)
- Support vector regression (SVR) (Chen et al., 2004)
- Fuzzy interaction regression (FIR) (Hong & Wang, 2014)
- Expected performance: *about* 95% *accuracy* for industrial practice

Multiple linear regression (MLR)

Basic MLR Model:

Data { (x^{i}, y^{i}) }, $x^{i} \in \mathbb{R}^{289}$, $y^{i} \in \mathbb{R}^{+}$, n = # data points $min_{\beta \in \mathbb{R}^{289}, \beta_{0} \in \mathbb{R}} \sum_{i=1}^{n} (y^{i} - (\beta^{T}x^{i} + \beta_{0}))^{2}$

Support vector regression (SVR)

• Basic SVR Model: ($C, \delta \ge 0$ are given)

$$\min_{\beta \in \mathbb{R}^{289}, \beta_0 \in \mathbb{R}, \varepsilon \in \mathbb{R}^n} \frac{1}{2} \beta^T \beta + C \sum_{i=1}^n \varepsilon_i^2$$

s.t.
$$\delta + \varepsilon_i \ge y^i - (\beta^T x^i + \beta_0) \ge -\delta - \varepsilon_i, \varepsilon_i \ge 0,$$

 $i = 1, \dots, n,$

Artificial neural network (ANN)

Basic ANN Model:

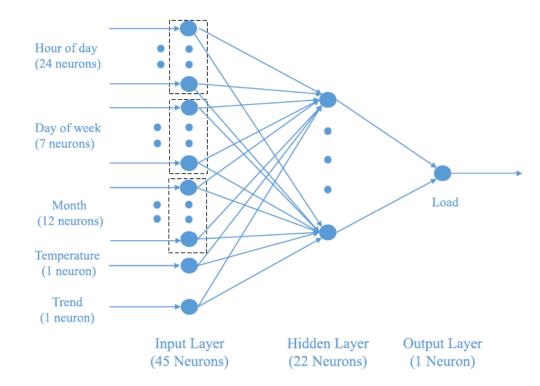


Fig. 1. The architecture of the ANN model.

Fuzzy interaction regression (FIR)

• Basic **FIR** Model: (*h* is a given parameter)

$$\min_{\beta \in \mathbb{R}^{289}, \beta_0 \in \mathbb{R}, c \in \mathbb{R}^{289}, c_0 \in \mathbb{R}} \sum_{i=1}^n \left(c^T \left| x^i \right| + c_0 \right)$$

s.t.
$$|1 - h| (c^T |x^i| + c_0) \ge y^i - (\beta^T x^i + \beta_0)$$

 $\ge -|1 - h| (c^T |x^i| + c_0)$

 $i = 1, \ldots, n, \quad c_j \ge 0, \quad j = 0, 1, \ldots, 289,$

Cyber attacks

 A cyberattack is any offensive maneuver that targets computer information systems, computer networks, infrastructures, or personal computer devices. <u>Wikipedia</u>

Cyber Attacks

- Cybersecurity currently presents a serious challenge to the resilience of power grids (Ericsson, 2010).
- The cyber attack on Ukraine's power grid (Perez, 2016), for instance, was a real threat to people's daily lives.
 Several other cyber attacks on power systems were discussed in (Hong & Hofmann, 2021).
- Data integrity attack is one form of cyber attacks. Hackers may access the supposedly protected data sets and inject misleading information to the historical load in a way such that the manipulations may not be easily detected by conventional operational practices.

Load Forecasting under data integrity attacks

- Important issues:
 - Deadly operational cost:
 - Under-capacity Brownout, Blackout
 - Unnecessary economic loss:
 - **Over-capacity**
- Challenge: Robustness
- Question: How good are the commonly used electric load forecasting models?

Benchmarking Dataset

- GEFCom2012 (Hong et al., 2014): a widely used Electric Load Forecasting dataset.
- Includes 4.5 years of hourly load and temperature information for a US utility with 21 zones (Z_1, \ldots, Z_{21}) .
- The load in Z_{21} is the sum of the other 20 zones.
- Data of 3 full calendar years (2005–2007) are taken for an empirical study.
- Data of (2005 and 2006) are used as the training data.
- Data of (2007) is used as the test data for benchmarking.

Computational Experiments

- In each experiment:
 - k% of data points are randomly selected
 - Load of each selected point is injected a noise (increase or decrease) by p%.
 - p is specified by a
 - -- number,
 - -- normal distribution $N(\mu, \sigma^2)$, or
 - -- uniform distribution $U(a, b) = (\mu \sigma, \mu + \sigma)$
- Major metric:

MAPE = mean absolute % error

RMSE = root mean square error

$$= \frac{100\%}{n} \sum_{t=1}^{n} \left| \frac{A_t - F_t}{A_t} \right|$$

Implementation

Computational platform:

MATLAB modules used in the implementation.

Model	MATLAB module
MLR	robustfit
ANN	Neural network toolbox
SVR	quadprog
FIR	linprog

Benchmarking w/o data integrity attack

• Baseline: $MLR \ge SVR \gg FIR \ge ANN$

MAPEs (%) of hourly load forecasts in 2007 without data integrity attacks.

	Zone	MLR	ANN	SVR	FIR
Aggregated zone	21	5.22	5.69	5.23	5.54
	1	7.01	8.88	7.02	8.14
	2	5.62	5.99	5.61	6.36
	3	5.62	6.19	5.61	6.36
	5	9.88	10.80	9.93	13.11
	6	5.55	6.34	5.55	6.20
	7	5.62	6.15	5.61	6.36
	8	7.50	8.57	7.47	8.40
	10	6.70	7.39	6.75	7.80
Degular zone	11	7.70	9.46	7.75	8.05
Regular zone	12	6.78	8.45	6.88	7.77
	13	7.39	9.46	7.40	8.35
	14	9.38	11.08	9.48	10.76
	15	7.44	9.36	7.47	8.27
	16	8.12	9.74	8.24	9.65
	17	5.26	6.41	5.27	5.83
	18	6.72	7.79	6.77	7.27
	19	7.90	10.28	7.96	8.78
	20	5.74	6.67	5.75	6.45
Special zone	4	16.08	17.72	16.06	19.72
Special zone	9	139.16	128.82	140.04	110.66

Benchmarking with $N(\mu, \sigma^2)$ attack

• Average MAPEs (%) under normally-distributed data attacks with varying amounts of injected data.

				$\sigma = 50$	0	
	k µ	10	20	30	40	50
MLR	L.	5.49	5.76	6.01	6.24	6.44
ANN	0	6.62	7.52	8.13	8.96	9.32
SVR	0	5.48	5.73	5.97	6.18	6.36
FIR		21.25	21.02	19.74	19.37	18.53
MLR		5.36	5.63	5.99	6.41	6.96
ANN	10	6.36	7.48	8.31	8.84	10.02
SVR	10	5.34	5.60	5.94	6.34	6.88
FIR		22.22	21.94	20.40	20.77	20.06
MLR		5.36	5.95	6.87	8.03	9.60
ANN	20	6.59	7.82	9.08	10.63	12.18
SVR	20	5.34	5.92	6.82	7.96	9.54
FIR		25.76	25.70	24.07	25.16	24.65
/ILR		5.49	6.69	8.49	10.70	13.54
ANN	20	6.83	8.38	10.42	12.66	15.18
VR	30	5.47	6.65	8.43	10.65	13.50
FIR		30.98	31.70	30.25	31.69	31.78
MLR		5.75	7.78	10.62	13.99	18.05
ANN	40	7.31	9.68	12.15	15.23	19.25
SVR	40	5.72	7.74	10.57	13.94	18.03
FIR		37.91	38.89	37.99	39.94	39.67

Benchmark with $U(\mu - \sigma, \mu + \sigma)$ attack

Forecast error in MAPEs (%) under uniformly-distributed data attacks.

	k µ	10	20	30	40	50
MLR		5.45	5.67	5.93	6.19	6.43
ANN		6.64	7.37	8.16	9.23	9.77
SVR	0	5.45	5.64	5.88	6.11	6.34
FIR		11.25	12.03	10.09	10.16	10.98
MLR		5.34	5.54	5.86	6.32	6.82
ANN	10	6.63	7.59	8.30	9.05	10.44
SVR	10	5.34	5.51	5.78	6.23	6.71
FIR		13.85	14.09	13.10	13.10	13.40
MLR		5.37	5.88	6.70	7.92	9.37
ANN	20	6.73	7.79	9.00	10.34	12.37
SVR	20	5.36	5.83	6.61	7.84	9.28
FIR		19.61	20.46	20.61	21.26	21.91
MLR		5.53	6.64	8.31	10.61	13.27
ANN	30	6.87	8.66	10.59	12.86	15.16
SVR	50	5.49	6.59	8.23	10.55	13.22
FIR		28.73	29.41	29.92	30.76	31.56
MLR		5.81	7.75	10.45	13.90	17.77
ANN	40	7.29	9.79	12.26	15.44	18.90
SVR	40	5.79	7.70	10.39	13.86	17.69
FIR		36.69	39.02	39.75	40.60	41.51

Lessons learned

• 1. Without data integrity attack: $MLR \ge SVR \gg FIR > ANN$ With data integrity attack $SVR \ge MLR \gg ANN > FIR$

 2. All 4 representative load forecasting models are working well, but they fail to generate robust forecasts (*MAPE* > 10%) under severe data integrity attack (k% > 30%).

 3. There is a need for more robust models for electric load forecasting.

Enhancing robustness

• Two basic ideas for investigation:

(1) weighting the l₂-norm of all residuals;
(2) changing the penalty function of errors from l₂-norm to l₁-norm.

- Three robust regression models for load forecasting:
 - two are based on iteratively re-weighted least squares (IRLS);
 - one is l_1 -norm based penalty.

Robust electric load foresting models

• IRLS_{bis}and IRLS_{log}

$$\min_{w \in R^{289}, b \in R} \sum_{i=1}^{n} r_i^2 (y^i - w^T x^i - b)^2,$$
(2)

where the weights {r_i, i = 1, ..., n} are determined by utilizing the regression residuals from last iteration. Generally speaking, to stay robust, an observation with smaller (and larger) residual is assigned with a smaller (and larger) weight. *piecewise "bi-square"* weight function

$$r_i = \begin{cases} 0, & \text{if}|u_i| \ge 1, \\ (1 - u_i^2)^2, & \text{if}|u_i| < 1, \end{cases}$$

continuous "logistic" weight function

 $r_i = \tan(u_i)/u_i, \qquad u_i = res_i/(tune \cdot s \cdot \sqrt{1-h})$

Robust electric load forecasting models

• l_1 -regression model (L_1)

$$\min_{\substack{w \in R^{289}, b \in R, \varepsilon \in R^n}} \sum_{i=1}^n \varepsilon_i$$

s.t. $\varepsilon_i \ge y^i - (w^T x^i + b) \ge -\varepsilon_i, \varepsilon_i \ge 0, i = 1, 2, \dots, n$

Implementations

Six models for benchmarking

MATLAB MODULES USED IN THE IMPLEMENTATION

Model	MATLAB Module
IRLS_bis	robustfit with defaulted "wfun" input
IRLS_log	robustfit with "wfun" input "logistic"
L_{I}	linprog
MLR	robustfit with "wfun" input "ols"
ANN	Neural Network Toolbox
SVR	quadprog

Benchmarking w/o data integrity attack

Zone	IRLS_	IRLS_	L_{I}	MLR	ANN	SVR
	bis	log				
21	5.30	5.27	5.33	5.22	5.69	5.23
1	7.08	7.03	7.08	7.01	8.88	7.02
2	5.56	5.56	5.52	5.62	5.99	5.61
3	5.56	5.56	5.52	5.62	6.19	5.61
5	9.69	9.67	9.64	9.88	10.80	9.93
6	5.56	5.54	5.53	5.55	6.34	5.55
7	5.56	5.56	5.52	5.62	6.15	5.61
8	7.59	7.56	7.59	7.50	8.57	7.47
10	6.70	6.73	6.79	6.70	7.39	6.75
11	7.97	7.94	8.20	7.70	9.46	7.75
12	6.95	6.91	6.99	6.78	8.45	6.88
13	7.48	7.46	7.44	7.39	9.46	7.40
14	9.41	9.39	9.40	9.38	11.08	9.48
15	7.38	7.39	7.40	7.44	9.36	7.47
16	8.13	8.11	8.11	8.12	9.74	8.24
17	5.31	5.29	5.30	5.26	6.41	5.27
18	6.77	6.74	6.73	6.72	7.79	6.77
19	7.88	7.88	7.87	7.90	10.28	7.96
20	5.73	5.71	5.68	5.74	6.67	5.75
Avg	7.017	7.002	7.017	6.996	8.278	7.029
4	15.83	15.90	15.89	16.08	17.72	16.06
9	164.05	152.10	153.48	139.16	128.82	140.04

MAPE (%) OF HOURLY LOAD FORECAST IN 2007

Benchmarking with data integrity attack Similar results for attack targeting economic loss

Forecast Error in MAPE (%) / RMSE (10⁵) Under Various Levels of Data Integrity Attacks Targeting System Blackouts

	k^{p}	10	20	30	40	50	60	70	80	90
IRLS_bis		5.50/1.26	5.39/1.23	5.30/1.21	5.29/1.21	5.29/1.21	5.29/1.21	5.29/1.21	5.29/1.21	5.29/1.21
IRLS_log		5.48/1.26	5.54/1.27	5.55/1.27	5.55/1.27	5.55/1.27	5.55/1.27	5.55/1.27	5.55/1.27	5.55/1.27
L_{I}	10	5.46/1.26	5.47/1.26	5.47/1.26	5.47/1.26	5.47/1.26	5.48/1.26	5.48/1.26	5.48/1.26	5.48/1.26
MLR	10	5.50/1.26	5.90/1.35	6.42/1.46	7.05/1.59	7.74/1.72	8.51/1.87	9.32/2.02	10.16/2.17	11.03/2.33
ANN		5.88/1.34	6.34/1.44	6.89/1.56	7.63/1.71	8.52/1.90	9.25/2.06	10.14/2.25	11.04/2.44	12.24/2.70
SVR		5.51/1.26	5.92/1.36	6.42/1.46	7.04/1.59	7.73/1.72	8.49/1.86	9.29/2.00	10.12/2.16	10.99/2.31
IRLS_bis		5.84/1.34	6.03/1.36	5.42/1.23	5.28/1.21	5.27/1.20	5.27/1.20	5.27/1.20	5.27/1.20	5.27/1.20
IRLS_log		5.81/1.33	6.22/1.41	6.32/1.43	6.35/1.44	6.35/1.44	6.35/1.44	6.35/1.44	6.35/1.44	6.35/1.44
L_{I}	20	5.66/1.31	5.71/1.33	5.71/1.33	5.72/1.33	5.72/1.33	5.72/1.33	5.72/1.33	5.72/1.33	5.72/1.33
MLR	20	5.88/1.35	6.96/1.58	8.38/1.83	10.05/2.13	11.80/2.44	13.63/2.75	15.39/3.06	17.27/3.39	19.17/3.72
ANN		6.17/1.41	7.34/1.65	8.83/1.95	10.37/2.24	12.28/2.64	14.10/2.99	15.99/3.34	18.01/3.78	19.73/4.10
SVR		5.89/1.35	7.01/1.58	8.38/1.83	10.00/2.12	11.73/2.42	13.52/2.73	15.38/3.05	17.26/3.37	19.16/3.70
IRLS_bis		6.32/1.45	7.91/1.74	9.84/2.07	11.81/2.39	13.79/2.71	15.67/3.02	17.15/3.25	18.20/3.39	18.68/2.10
IRLS_log		6.28/1.44	7.67/1.69	9.21/1.96	10.69/2.20	12.16/2.44	13.55/2.67	14.67/2.86	15.87/3.05	17.03/3.25
L_I	30	5.98/1.38	6.14/1.43	6.14/1.43	6.15/1.43	6.16/1.43	6.16/1.43	6.16/1.43	6.16/1.43	6.16/1.43
MLR	50	6.35/1.45	8.35/1.83	10.71/2.24	13.35/2.70	16.08/3.18	19.04/3.68	21.70/4.14	24.53/4.63	27.37/5.13
ANN		6.60/1.51	8.69/1.91	11.03/2.54	13.69/2.87	16.36/3.36	19.34/3.93	22.11/4.43	24.85/5.02	28.38/5.67
SVR		6.43/1.46	8.29/1.82	10.70/2.24	13.33/2.70	16.08/3.16	19.03/3.67	21.70/4.14	24.54/4.62	27.38/5.12
IRLS_bis		6.97/1.57	9.77/2.07	13.08/2.64	16.62/3.24	20.37/3.87	23.88/4.48	27.53/5.11	31.18/5.75	34.83/6.38
IRLS_log		6.94/1.57	9.63/2.05	12.77/2.58	16.13/3.15	19.71/3.76	23.02/4.33	26.49/4.93	29.97/5.53	33.44/6.14
L_{I}	40	6.64/1.52	7.40/1.69	7.63/1.76	7.82/1.83	8.05/1.94	8.15/2.01	8.30/2.11	8.45/2.28	8.59/2.36
MLR	40	6.97/1.57	9.90/2.10	13.36/2.69	17.04/3.32	20.93/3.98	24.59/4.61	28.38/5.27	32.17/5.93	35.97/6.59
ANN		7.17/1.62	10.07/2.17	13.55/2.81	17.07/3.47	20.87/4.18	24.78/4.91	28.31/5.65	32.47/6.38	36.77/7.12
SVR		6.95/1.57	9.89/2.10	13.35/2.69	17.03/3.31	20.92/3.97	24.59/4.61	28.39/5.26	31.60/5.81	34.54/6.33

Benchmarking with data integrity attack

FORECAST ERROR IN MAPE (%) / RMSE (10⁵) Under Various Levels of Data Integrity Attacks Targeting System Blackouts

	k^{p}	10	20	30	40	50	60	70	80	90
IRLS_bis		5.50/1.26	5.39/1.23	5.30/1.21	5.29/1.21	5.29/1.21	5.29/1.21	5.29/1.21	5.29/1.21	5.29/1.21
IRLS_log		5.48/1.26	5.54/1.27	5.55/1.27	5.55/1.27	5.55/1.27	5.55/1.27	5.55/1.27	5.55/1.27	5.55/1.27
L_I	10	5.46/1.26	5.47/1.26	5.47/1.26	5.47/1.26	5.47/1.26	5.48/1.26	5.48/1.26	5.48/1.26	5.48/1.26
MLR	10	5.50/1.26	5.90/1.35	6.42/1.46	7.05/1.59	7.74/1.72	8.51/1.87	9.32/2.02	10.16/2.17	11.03/2.33
ANN		5.88/1.34	6.34/1.44	6.89/1.56	7.63/1.71	8.52/1.90	9.25/2.06	10.14/2.25	11.04/2.44	12.24/2.70
SVR		5.51/1.26	5.92/1.36	6.42/1.46	7.04/1.59	7.73/1.72	8.49/1.86	9.29/2.00	10.12/2.16	10.99/2.31
IRLS_bis		5.84/1.34	6.03/1.36	5.42/1.23	5.28/1.21	5.27/1.20	5.27/1.20	5.27/1.20	5.27/1.20	5.27/1.20
IRLS_log		5.81/1.33	6.22/1.41	6.32/1.43	6.35/1.44	6.35/1.44	6.35/1.44	6.35/1.44	6.35/1.44	6.35/1.44
L_I	20	5.66/1.31	5.71/1.33	5.71/1.33	5.72/1.33	5.72/1.33	5.72/1.33	5.72/1.33	5.72/1.33	5.72/1.33
MLR	20	5.88/1.35	6.96/1.58	8.38/1.83	10.05/2.13	11.80/2.44	13.63/2.75	15.39/3.06	17.27/3.39	19.17/3.72
ANN		6.17/1.41	7.34/1.65	8.83/1.95	10.37/2.24	12.28/2.64	14.10/2.99	15.99/3.34	18.01/3.78	19.73/4.10
SVR		5.89/1.35	7.01/1.58	8.38/1.83	10.00/2.12	11.73/2.42	13.52/2.73	15.38/3.05	17.26/3.37	19.16/3.70
IRLS bis		6.32/1.45	7.91/1.74	9.84/2.07	11.81/2.39	13.79/2.71	15.67/3.02	17.15/3.25	18.20/3.39	18.68/2.10
IRLS log		6.28/1.44	7.67/1.69	9.21/1.96	10.69/2.20	12.16/2.44	13.55/2.67	14.67/2.86	15.87/3.05	17.03/3.25
L_I	30	5.98/1.38	6.14/1.43	6.14/1.43	6.15/1.43	6.16/1.43	6.16/1.43	6.16/1.43	6.16/1.43	6.16/1.43
MLR	30	6.35/1.45	8.35/1.83	10.71/2.24	13.35/2.70	16.08/3.18	19.04/3.68	21.70/4.14	24.53/4.63	27.37/5.13
ANN		6.60/1.51	8.69/1.91	11.03/2.54	13.69/2.87	16.36/3.36	19.34/3.93	22.11/4.43	24.85/5.02	28.38/5.67
SVR		6.43/1.46	8.29/1.82	10.70/2.24	13.33/2.70	16.08/3.16	19.03/3.67	21.70/4.14	24.54/4.62	27.38/5.12
IRLS bis		6.97/1.57	9.77/2.07	13.08/2.64	16.62/3.24	20.37/3.87	23.88/4.48	27.53/5.11	31.18/5.75	34.83/6.38
IRLS_log		6.94/1.57	9.63/2.05	12.77/2.58	16.13/3.15	19.71/3.76	23.02/4.33	26.49/4.93	29.97/5.53	33.44/6.14
L_I	40	6.64/1.52	7.40/1.69	7.63/1.76	7.82/1.83	8.05/1.94	8.15/2.01	8.30/2.11	8.45/2.28	8.59/2.36
MLR	40	6.97/1.57	9.90/2.10	13.36/2.69	17.04/3.32	20.93/3.98	24.59/4.61	28.38/5.27	32.17/5.93	35.97/6.59
ANN		7.17/1.62	10.07/2.17	13.55/2.81	17.07/3.47	20.87/4.18	24.78/4.91	28.31/5.65	32.47/6.38	36.77/7.12
SVR		6.95/1.57	9.89/2.10	13.35/2.69	17.03/3.31	20.92/3.97	24.59/4.61	28.39/5.26	31.60/5.81	34.54/6.33

Lessons learned

• Both idea of "weighted loss" and " l_1 norm" work.

RANKINGS OF THE OVERALL ACCURACY OF THE FORECASTING MODELS

Model	Without data integrity	With data integrity
	attacks	attacks
IRLS_bis	3	2
IRLS_log	4	3
L_1	2	1
MLR	1	5
ANN	6	6
SVR	5	4

Question: How about developing a robust SVR ?

Robust support vector regression

- Linear SVR
- Linear SVR with Kernel
- Quadratic surface SVR (QSSVR)
- Robust weighted QSSVR

Robust SVR for electric load forecating

• Linear SVR (Chen et al. 2004)

$$\min_{w,c,\xi} \frac{1}{2} w^T w + C_p \sum_{i=1}^n \xi_i$$

s.t. $\delta + \xi_i \ge y^i - (w^T x^i + c), i = 1, 2, ..., n,$
 $y^i - (w^T x^i + c) \ge -\delta - \xi_i, i = 1, 2, ..., n,$
 $\xi_i \ge 0, i = 1, 2, ..., n.$

SVR with kernel

$$\min_{w,c,\xi} \frac{1}{2} w^T w + C_p \sum_{i=1}^n \xi_i$$

s.t. $\delta + \xi_i \ge y^i - (w^T \phi(x^i) + c), i = 1, 2, ..., n,$
 $y^i - (w^T \phi(x^i) + c) \ge -\delta - \xi_i, i = 1, 2, ..., n,$
 $\xi_i \ge 0, i = 1, 2, ..., n.$

Robust QSSVR for electric load forecasting

Quadratic surface SVR model (Luo et al., 2021)

$$\begin{split} \min_{W,b,c,\xi} & \sum_{i=1}^{n} \|Wx^{i} + b\|_{2}^{2} + C_{p} \sum_{i=1}^{n} \xi_{i} \\ s.t. & \delta + \xi_{i} \geq y^{i} - (\frac{1}{2} (x^{i})^{T} Wx^{i} + b^{T} x^{i} + c), i = 1, 2, \dots, n, \\ & y^{i} - (\frac{1}{2} (x^{i})^{T} Wx^{i} + b^{T} x^{i} + c) \geq -\delta - \xi_{i}, i = 1, 2, \dots, n, \\ & \xi_{i} \geq 0, i = 1, 2, \dots, n. \end{split}$$

- Theoretical development: dual QSSVR, optimality analysis
- Solution method development

Robust SVR for electric load forecasting

Weighted quadratic surface SVR (WQSSVR) (Luo et al., 2021)

$$\begin{split} \min_{W,b,c,\xi} & \sum_{i=1}^{k} \beta_i \|Wx^i + b\|_2^2 + C_p \sum_{i=1}^{k} \beta_i \xi_i \\ s.t. & \delta + \xi_i \ge y^i - (\frac{1}{2} (x^i)^T Wx^i + b^T x^i + c), i = 1, 2, \dots, n, \\ & y^i - (\frac{1}{2} (x^i)^T Wx^i + b^T x^i + c) \ge -\delta - \xi_i, i = 1, 2, \dots, n, \\ & \xi_i \ge 0, i = 1, 2, \dots, n. \end{split}$$

• Weights $\beta_i = e^{-|u_i|}, i = 1, 2, ..., n$

where $u_i = |\gamma_i - \overline{\gamma}| / MED$, $\gamma_i \triangleq |y^i - \hat{y}^i|$ ($\hat{y}^i = w^T x^i + c$, where *w* and *c* are generated by using the training points

Benchmarking w/o data integrity attack

WQSSVR is picking up!

MAPE (%)	of hour	y load	forecast	without	data	attacks.
----------	---------	--------	----------	---------	------	----------

Zone	IRLS_bis	L_1	MLR	SVR_Gau	WQSSVR
21	5.30	5.33	5.22	6.31	5.38
1	7.08	7.08	7.01	8.34	6.93
2	5.56	5.52	5.62	7.39	5.59
3	5.56	5.52	5.62	7.39	5.59
5	9.69	9.64	9.88	10.51	9.69
6	5.56	5.53	5.55	7.24	5.59
7	5.56	5.52	5.62	7.46	5.60
8	7.59	7.59	7.50	8.74	7.39
10	6.70	6.79	6.70	9.53	6.64
11	7.97	8.20	7.70	9.63	7.64
12	6.95	6.99	6.78	8.35	7.31
13	7.48	7.44	7.39	8.11	7.54
14	9.41	9.40	9.38	10.52	9.92
15	7.38	7.40	7.44	7.96	7.76
16	8.13	8.11	8.12	9.10	8.23
17	5.31	5.30	5.26	6.93	5.32
18	6.77	6.73	6.72	7.71	6.75
19	7.88	7.87	7.90	8.86	7.94
20	5.73	5.68	5.74	7.44	5.66
Avg	7.02	7.02	7.00	8.40	7.06
4	15.83	15.89	16.08	15.86	15.90
9	164.05	153.48	139.16	157.52	159.93

Benchmarking with attacks targeting economic losses

• $N(\mu, \sigma^2)$

Averages of MAPE (%) and SE of MAPE averages (%) for under normally distributed data attacks targeting economic losses.

		p%		
	k	$N(0.25, 0.5^2)$	$N(0.5, 0.5^2)$	$N(0.75, 0.5^2)$
IRLS_bis		5.23/0.01	5.23/0.01	5.24/0.01
L ₁	40	5.16/0.02	5.19/0.02	5.50/0.03
MLR	40	9.23/0.18	17.41/0.27	27.50/0.40
SVR_Gau		6.39/0.05	6.91/0.06	8.45/0.13
WQSSVR		5.28/0.05	5.27/0.05	5.31/0.05
IRLS_bis		5.46/0.01	10.44/0.29	28.22/0.46
L ₁	50	5.24/0.01	5.97/0.09	9.63/0.18
MLR	50	11.03/0.25	22.66/0.40	35.01/0.47
SVR_Gau		6.84/0.06	8.87/0.14	14.27/0.22
WQSSVR		5.34/0.07	5.60/0.09	5.84/0.09
IRLS_bis		7.90/0.11	21.93/0.45	38.60/0.42
L ₁	60	5.47/0.03	10.35/0.12	25.27/0.34
MLR	60	13.29/0.39	27.36/0.43	42.27/0.41
SVR_Gau		7.66/0.10	12.93/0.27	25.13/0.39
WQSSVR		5.64/0.08	5.81/0.06	11.97/0.31
IRLS_bis		11.84/0.21	29.19/0.35	46.26/0.39
L ₁	70	6.80/0.14	20.56/0.39	41.61/0.91
MLR	70	15.22/0.42	32.52/0.38	48.59/0.36
SVR_Gau		9.12/0.07	19.77/0.30	38.45/0.29
WQSSVR		5.86/0.06	9.58/0.35	26.00/0.61
IRLS_bis		15.96/0.36	35.27/0.46	56.23/0.35
L ₁	80	10.67/0.31	31.18/0.75	57.01/0.28
MLR	80	17.89/0.42	37.20/0.45	57.55/0.31
SVR_Gau		11.87/0.14	28.73/0.29	51.86/0.19
WQSSVR		7.96/0.26	19.28/0.52	47.90/0.19
IRLS_bis		19.02/0.43	40.97/0.49	63.60/0.40
L ₁	90	16.10/0.62	39.62/0.86	64.38/0.84
MLR	90	19.76/0.42	41.98/0.48	64.19/0.41
SVR_Gau		15.84/0.25	37.25/0.34	60.69/0.26
WQSSVR		12.39/0.95	32.14/2.28	62.97/2.47

An example of attacks targeting economic losses

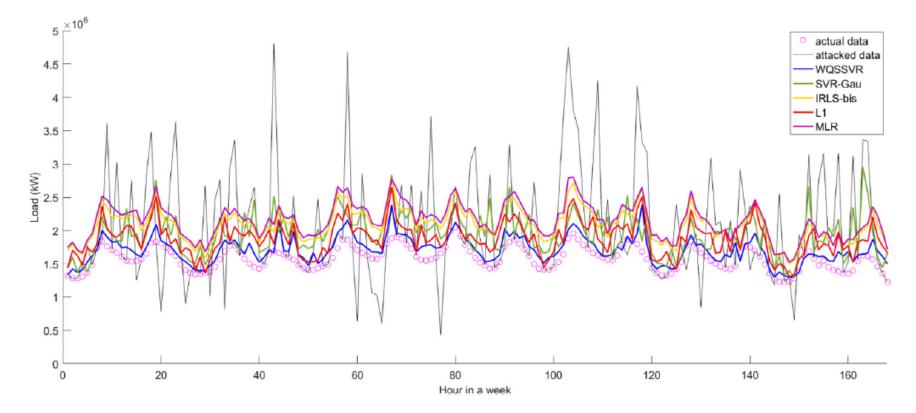


Fig. 1. Fitted (2005/1/7-2005/1/13) hourly load profile under normally distributed data attacks targeting economic losses.

Benchmarking with attacks targeting system blackouts

• k% = 70%

MAPE (%) of zones from GEFCom 2012 under data attacks targeting system blackouts.

• $U(-0.8, 0.2)$ 2 20.9 IRLS_bis L_1 MLR SVR_Gau WQSSVR 1 19.97 13.97 21.51 19.56 8.63 2 20.96 13.46 22.30 17.57 7.79 3 20.96 13.22 22.30 17.60 8.07 5 15.82 11.32 17.23 15.07 10.11 6 20.68 13.11 22.05 17.43 7.77 7 20.96 13.18 22.30 17.57 7.89 8 22.58 15.74 23.98 19.62 8.84 10 22.59 15.27 23.88 18.84 10.05 11 23.90 17.26 25.33 21.25 8.26 12 21.26 15.08 22.80 19.65 11.70 13 18.62 13.31 19.96 16.77 14.24 14 19.62 15.81 20.66 19.23 18.42 15 20.31 14.88 21.60 16.52 13.74 16 20.61 15.54 22.08 18.86 12.11 17 19.88 12.64 21.46 17.56 7.02 18 20.37 14.49 21.81 18.21 9.48 19 19.64 15.01 21.07 18.71 11.81 20 21.18 13.99 22.60 17.95 9.56 4 22.54 17.26 23.89 21.36 16.35 9 117.00 111.85 117.56 124.94 110.11		- j					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	• $U(-0.8, 0.2)$	Zone	IRLS_bis	L_1	MLR	SVR_Gau	WQSSVR
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	19.97	13.97	21.51	19.56	8.63
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2	20.96	13.46	22.30	17.57	7.79
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		3	20.96	13.22	22.30	17.60	8.07
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		5	15.82	11.32	17.23	15.07	10.11
822.5815.7423.9819.628.841022.5915.2723.8818.8410.051123.9017.2625.3321.258.261221.2615.0822.8019.6511.701318.6213.3119.9616.7714.241419.6215.8120.6619.2318.421520.3114.8821.6016.5213.741620.6115.5422.0818.8612.111719.8812.6421.4617.567.021820.3714.4921.8118.219.481919.6415.0121.0718.7111.812021.1813.9922.6017.959.56422.5417.2623.8921.3616.35		6	20.68	13.11	22.05	17.43	7.77
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		7	20.96	13.18	22.30	17.57	7.89
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		8	22.58	15.74	23.98	19.62	8.84
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		10	22.59	15.27	23.88	18.84	10.05
1318.6213.3119.9616.7714.241419.6215.8120.6619.2318.421520.3114.8821.6016.5213.741620.6115.5422.0818.8612.111719.8812.6421.4617.567.021820.3714.4921.8118.219.481919.6415.0121.0718.7111.812021.1813.9922.6017.959.56422.5417.2623.8921.3616.35		11	23.90	17.26	25.33	21.25	8.26
1419.6215.8120.6619.2318.421520.3114.8821.6016.5213.741620.6115.5422.0818.8612.111719.8812.6421.4617.567.021820.3714.4921.8118.219.481919.6415.0121.0718.7111.812021.1813.9922.6017.959.56422.5417.2623.8921.3616.35		12	21.26	15.08	22.80	19.65	11.70
1520.3114.8821.6016.5213.741620.6115.5422.0818.8612.111719.8812.6421.4617.567.021820.3714.4921.8118.219.481919.6415.0121.0718.7111.812021.1813.9922.6017.959.56422.5417.2623.8921.3616.35		13	18.62	13.31	19.96	16.77	14.24
1620.6115.5422.0818.8612.111719.8812.6421.4617.567.021820.3714.4921.8118.219.481919.6415.0121.0718.7111.812021.1813.9922.6017.959.56422.5417.2623.8921.3616.35		14	19.62	15.81	20.66	19.23	18.42
1719.8812.6421.4617.567.021820.3714.4921.8118.219.481919.6415.0121.0718.7111.812021.1813.9922.6017.959.56422.5417.2623.8921.3616.35		15	20.31	14.88	21.60	16.52	13.74
1820.3714.4921.8118.219.481919.6415.0121.0718.7111.812021.1813.9922.6017.959.56422.5417.2623.8921.3616.35		16	20.61	15.54	22.08	18.86	12.11
1919.6415.0121.0718.7111.812021.1813.9922.6017.959.56422.5417.2623.8921.3616.35		17	19.88	12.64	21.46	17.56	7.02
2021.1813.9922.6017.959.56422.5417.2623.8921.3616.35		18	20.37	14.49	21.81	18.21	9.48
4 22.54 17.26 23.89 21.36 16.35		19	19.64	15.01	21.07	18.71	11.81
		20	21.18	13.99	22.60	17.95	9.56
9 117.00 111.85 117.56 124.94 110.11		4	22.54	17.26	23.89	21.36	16.35
		9	117.00	111.85	117.56	124.94	110.11

Lessons learned

- In our experiments, robust load forecasting models (L_1 , IRLS, and SVR with Gaussian kernel) may fail to provide reliable load forecasts under large-scale data integrity attacks (for $k\% \ge 40\%$).
- WQSSVR model is capable of producing more accurate and robust load forecasts.
- When more data points (e.g., k% ≥ 70%) of whole data set) are attacked with a large mean of perturbation magnitude, the WQSSVR model demonstrates much stronger robustness than other.
- Better robust electric load forecasting is needed for facing various types of data integrity attacks.