SUPPORT VECTOR MACHINES & NEURAL NETWORKS

LECTURE 6 – SUPPORT VECTOR MACHINES PART # III

A. Bi-classification

History, LSVM, Approximate LSVM, Soft LSVM, Kernel-based linear SVM, nonlinear SVM

B. Multi-classification

OVO, OVA, Twin SVM

C. Prediction

Support Vector Regression (SVR)

*Copyright: Professor Shu-Cherng Fang of NCSU-ISE

Multi-class classification

• Multi-class classification (multi-classification) is a problem of classifying instances into one of three or more classes.

· Pictures taken from Wikipedia

Basic ideas of multiclass classification

- If we are given a dataset in C classes and a new datapoint $x \in \mathbb{R}^n$, we may consider two commonly adopted approaches to determine which class x belongs to:
 - 1. OVO (one vs. one) approach
 - 2. OVA (one vs. all) approach

Basic ideas of multiclass classification

- 1. OVO (one vs. one) approach
 - Take each pair of different classes (C_i, C_j) .
 - Label all data-points in C_i with a label +1; Label all data-points in C_i with a label - 1.
 - Apply a bi-class SVM classifier to find (w, b)and determine $x \in C_i$ or $x \in C_j$.
 - Assign a voting score to each class of the pair

$$Score(C_i) = \begin{cases} 1, & \text{if } \mathbf{x} \in C_i \\ 0, & \text{if } \mathbf{x} \in C_j \end{cases}$$

- Sum up scores/votes over all pairs involving C_i .
- **Decision:** *x* belongs to the class with the hightest total score.

OVO related issues

- How many SVM involved?
 # of all possible pairs = C(C-1)/2
- Tie breaker?

secondary score?

• Better scoring measure?

Basic ideas of multiclass classification

- 2. OVA (one vs. all of the rest) approach
 - Take each class C_i .
 - Label all data-points in C_i with a label +1; Label all data-points not in C_i with a label - 1.
 - Apply a bi-class SVM classifier to find (w, b)and determine $x \in C_i$ or $x \notin C_i$.
 - Assign a score to each class
 - $Score(C_i) = \mathbf{w}^T \mathbf{x} + \mathbf{b}$
 - Decision: *x* belongs to the class with hightest score.

OVA related issues

- How many SVM involved?
 - # of all possible pairs = C ($\ll C(C-1)/2$)
- Imbalanced datasets

quality of results?

Better scoring ?

- Any approaches other than OVO and OVA ?
 tournament ?
- Which SVM model to use?

Beyond LSSVM and KSSVM

 Motivation: Who says we should use only one separation hyperplane (surface) for bi-classification?

Picture from ScienceDirect.com

Twin support vector machines - TWSVM

Basic ideas:

- (i) Use two non-parallel SVM to separate two distinct classes of data;
- (ii) All points in one class center around a corresponding SVM separation hyperplane while all points in the other class are kept away from this hyperplane for a safe distance;
- (iii) When a new point comes into the picture, it is classified based on its "distance" to each hyperplane.

Realization of TWSVM

Picture from researchgate.net

Twin support vector machines

References:

1. O.L. Mangasarian and E.W. Wild, "Multisurface Proximal Support Vector Classification via Generalized Eigenvalues," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 1, pp. 69-74, 2006.

2. Jayadeva, R. Khemchandani and S. Chandra, "Twin Support Vector Machines for Pattern Classification," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 29, no. 5, pp. 905-910,. 2007.

Twin support vector machines

Problem Setting:

• Dataset $S = \{ \mathbf{x}^i \in \mathbb{R}^n \mid i = 1, 2, ..., N \}$ of N data points of n attributes.

• Two classes: $S = S_A \cup S_B$, $S_A \cap S_B = \emptyset$ with $|S_A| = N_A$ and $|S_B| = N_B$.

• Denote
$$S_A = \{ \mathbf{x}_A^i \in \mathbb{R}^n \mid i = 1, 2, ..., N_A \},\$$

 $S_B = \{ \mathbf{x}_B^j \in \mathbb{R}^n \mid j = 1, 2, ..., N_B \}.$

Labels

$$y_i = +1$$
, for $x_A^i \in S_A$, $i = 1, 2, ..., N_A$
 $y_j = -1$, for $x_B^j \in S_B$, $j = 1, 2, ..., N_B$

Twin support vector machines

Problem Setting:

Separation hyperplanes:

For
$$S_A$$
 Class: $\boldsymbol{w^{(1)}}^T \boldsymbol{x} + \boldsymbol{b^{(1)}} = 0$
For S_B Class: $\boldsymbol{w^{(2)}}^T \boldsymbol{x} + \boldsymbol{b^{(2)}} = 0$
 $\boldsymbol{w^{(i)}} \in \mathbb{R}^n, \boldsymbol{b^{(i)}} \in \mathbb{R}, i = 1, 2.$
Denote $\boldsymbol{u^{(i)}} = {\binom{\boldsymbol{w^{(i)}}}{\boldsymbol{b^{(i)}}}} \in \mathbb{R}^{n+1}, i = 1, 2.$

Data preparation

data records of S_A : $X_A^T = [x_A^1, ..., x_A^{N_A}] \in M^{n \times N_A}$ data records of S_B : $X_B^T = [x_B^1, ..., x_B^{N_B}] \in M^{n \times N_B}$ unit vector $e_A \in \mathbb{R}^{N_A}$: a column vector with all elements being 1. unit vector $e_B \in \mathbb{R}^{N_B}$: a column vector with all elements being 1. Denote $\hat{X}_A^T = \begin{pmatrix} X_A^T \\ e_A^T \end{pmatrix} \in M^{(n+1) \times N_A}$ and $\hat{X}_B^T = \begin{pmatrix} X_B^T \\ e_B^T \end{pmatrix} \in M^{(n+1) \times N_B}$ Twin soft support vector machine model - TWSSVM (TWSSVM-1)

$$\begin{aligned} Min & \frac{1}{2} \sum_{i=1}^{N_A} \left(\boldsymbol{w}^{(1)^T} \boldsymbol{x}_A^i + b^{(1)} \right)^2 + \mathcal{C}_1 \sum_{j=1}^{N_B} \xi_j^{(1)} \\ \text{s.t.} & y_j \left(\boldsymbol{w}^{(1)^T} \boldsymbol{x}_B^j + b^{(1)} \right) \ge 1 - \xi_j^{(1)}, j = 1, \dots, N_B \\ & \boldsymbol{w}^{(1)} \in \mathbb{R}^n, b^{(1)} \in \mathbb{R}, \, \boldsymbol{\xi}^{(1)} \in \mathbb{R}_+^{N_B} \end{aligned}$$

(TWSSVM-2)

$$\begin{aligned} \text{Min} & \quad \frac{1}{2} \sum_{i=1}^{N_B} \left(\boldsymbol{w}^{(2)^T} \boldsymbol{x}_B^j + b^{(2)} \right)^2 + \mathcal{C}_2 \sum_{i=1}^{N_A} \xi_i^{(2)} \\ \text{s.t.} & \quad y_i \left(\boldsymbol{w}^{(2)^T} \boldsymbol{x}_A^i + b^{(2)} \right) \ge 1 - \xi_i^{(2)}, \, i = 1, \dots, N_A \\ & \quad \boldsymbol{w}^{(2)} \in \mathbb{R}^n, b^{(2)} \in \mathbb{R}, \, \boldsymbol{\xi}^{(2)} \in \mathbb{R}_+^{N_A} \end{aligned}$$

Observations

- Both (TWSSVM-1) and (TWSSVM-2) are convex quadratic programming problems.
- Compared to LSSVM, (TWSSVM-1) and (TWSSVM-2) have the same number of variables but fewer constraints.
- The total complexity of solving two smaller QPs is about ¼ of that solving LSSVM.
- The accuracy of TWSSVM is no inferior to that of LSSVM.

Example

• From reference [2]

Data Set	TWSVM (EXE file)	TWSVM (DLL file)	SVM (DLL file)
Hepatitis (155×19)	4.37	4.85	12.7
Sonar (208×60)	4.62	6.64	24.9
Heart-statlog (270×14)	4.72	11.3	50.9
Heart-c (303×14)	8.37	14.92	68.2
Ionosphere (351×34)	9.93	25.9	102.2
Votes (435×16)	12.8	45.8	189.4
Australian (690×14)	37.4	142.1	799.2
Pima-Indian (768×8)	56.9	231.5	1078.6
CMC (1473×9)	63.4	1737.9	6827.8

Data Set	TWSVM	GEPSVM	SVM
Heart-statlog (270×14)	84.44±4.32	84.81±3.87	84.07±4.40
Heart-c (303×14)	83.80 ± 5.53	84.44 ± 5.27	82.82 ± 5.15
Hepatitis (155×19)	80.79 ± 12.24	58.29 ± 19.07	80.00±8.30
Ionosphere (351×34)	88.03 ± 2.81	75.19 ± 5.50	86.04 ± 2.37
Sonar (208×60)	77.26 ± 10.10	66.76 ± 10.75	79.79 ± 5.31
Votes (435×16)	96.08 ± 3.29	91.93 ± 3.18	94.50 ± 2.71
$Pima-Indian(768\times8)$	73.70 ± 3.97	74.60 ± 5.07	76.68 ± 2.90
Australian (690×14)	85.80 ± 5.05	85.65 ± 4.60	85.51 ± 4.58
CMC (1473×9)	67.28 ± 2.21	65.99 ± 2.30	67.82 ± 2.63

Accuracies have been indicated as percentages.

Training Times (in Seconds)

TWSSVM

TWSSVM classifier

 $class_{TWSSVM}(\mathbf{x}) = \arg\min\{|f_A(\mathbf{x})|, |f_B(\mathbf{x})|\}$

Primal version TWSSVM

$$f_A(\boldsymbol{x}) = \boldsymbol{w}^{(1)^T} \boldsymbol{x} + b^{(1)}$$
$$f_B(\boldsymbol{x}) = \boldsymbol{w}^{(2)^T} \boldsymbol{x} + b^{(2)}$$

Dual TWSSVM and kernel-based TWSSVM

- Basic approach:
 - 1. Following the same procedure of finding dual LSSVM, we can derive dual TWSSVM.
 - 2. Following the same procedure of finding kernel-based LSSVM, we can derive kernel-based TWSSVM.

TWSSVM model – vector form

(TWSSVM-1)

$$Min \quad \frac{1}{2} \|X_A w^{(1)} + e_A b^{(1)}\|_2^2 + C_1 e_B^T \xi^{(1)}$$

s.t.
$$(-1) (X_B w^{(1)} + e_B b^{(1)}) \ge e_B - \xi^{(1)}$$
$$w^{(1)} \in \mathbb{R}^n, b^{(1)} \in \mathbb{R}, \ \xi^{(1)} \in \mathbb{R}_+^{N_B}$$

(TWSSVM-2)

$$Min \qquad \frac{1}{2} \left\| X_B \boldsymbol{w}^{(2)} + \boldsymbol{e}_B b^{(2)} \right\|_2^2 + C_2 \boldsymbol{e}_A^T \boldsymbol{\xi}^{(2)}$$

s.t. $(+1) \left(X_A \boldsymbol{w}^{(2)} + \boldsymbol{e}_B \ b^{(2)} \right) \ge \boldsymbol{e}_A - \boldsymbol{\xi}^{(2)}$
 $\boldsymbol{w}^{(2)} \in \mathbb{R}^n, b^{(2)} \in \mathbb{R}, \ \boldsymbol{\xi}^{(2)} \in \mathbb{R}_+^{N_A}$

Dual TWSSVM-1 model

Lagrangian

$$L(\mathbf{w}^{(1)}, b^{(1)}, \boldsymbol{\xi}^{(1)}, \boldsymbol{\alpha}, \boldsymbol{\theta}) = \frac{1}{2} \|X_A \mathbf{w}^{(1)} + \mathbf{e}_A b^{(1)}\|_2^2 + C_1 \mathbf{e}_B^T \boldsymbol{\xi}^{(1)} + \boldsymbol{\alpha}^T (\mathbf{e}_B - \boldsymbol{\xi}^{(1)} + X_B \mathbf{w}^{(1)} + \mathbf{e}_B b^{(1)}) - \boldsymbol{\theta}^T \boldsymbol{\xi}^{(1)}$$

K-K-T conditions

(i)
$$X_A^T (X_A w^{(1)} + e_A b^{(1)}) + X_B^T \alpha = 0;$$

(ii) $e_A^T (X_A w^{(1)} + e_A b^{(1)}) + e_B^T \alpha = 0;$
(iii) $C_1 e_B - \alpha - \theta = 0;$
(iv) $-(X_B w^{(1)} + e_B b^{(1)}) + \xi^{(1)} \ge e_B, \xi^{(1)} \ge 0;$
(v) $\alpha^T (-(X_B w^{(1)} + e_B b^{(1)}) + \xi^{(1)} - e_B) = 0, \theta^T \xi^{(1)} = 0;$
(vi) $\alpha \ge 0, \theta \ge 0.$

Dual TWSSVM-1 model

(iii) says $C_1 e_B \ge \alpha \ge 0$,

$$\Leftrightarrow \mathbf{0} \le \alpha_j \le \mathcal{C}_1 \text{ for } j = 1, \dots, N_B$$

(i)+(ii) says

$$\begin{pmatrix} X_A^T \\ e_A^T \end{pmatrix} (X_A, e_A) \begin{pmatrix} \mathbf{w}^{(1)} \\ b^{(1)} \end{pmatrix} + \begin{pmatrix} X_B^T \\ e_B^T \end{pmatrix} \boldsymbol{\alpha} = \mathbf{0}$$

$$\Leftrightarrow \quad \hat{X}_A^T \hat{X}_A \boldsymbol{u}^{(1)} + \hat{X}_B^T \quad \boldsymbol{\alpha} = \mathbf{0}$$

$$\Leftrightarrow \quad \boldsymbol{u}^{(1)} = -(\hat{X}_A^T \hat{X}_A)^{-1} \hat{X}_B^T \boldsymbol{\alpha} \quad \text{[practically, use } (\hat{X}_A^T \hat{X}_A + \varepsilon I)^{-1}]$$

• dual objective function $h(\boldsymbol{\alpha}, \boldsymbol{\theta}) = Min_{w^{(1)} \in \mathbb{R}^{n}, b^{(1)} \in \mathbb{R}, \xi^{(1)} \in \mathbb{R}_{+}^{N_{B}}} L(\boldsymbol{w}^{(1)}, \boldsymbol{b}^{(1)}, \boldsymbol{\zeta}^{(1)}, \boldsymbol{\alpha}, \boldsymbol{\theta})$ $= -\frac{1}{2} \boldsymbol{\alpha}^{T} \hat{X}_{B} (\hat{X}_{A}^{T} \hat{X}_{A})^{-1} \hat{X}_{B}^{T} \boldsymbol{\alpha} + \boldsymbol{e}_{B}^{T} \boldsymbol{\alpha}$

Dual TWSSVM model

(DTWSSVM-1)

$$Max \quad -\frac{1}{2} \boldsymbol{\alpha}^T \hat{X}_B (\hat{X}_A^T \hat{X}_A)^{-1} \hat{X}_B^T \boldsymbol{\alpha} + \boldsymbol{e}_B^T \boldsymbol{\alpha}$$

s.t.
$$0 \le \alpha_j \le C_1 \text{ for } j = 1, \dots, N_B$$

dual-primal conversion: $\binom{w^{(1)}}{b^{(1)}} = u^{(1)} = -(\hat{X}_A^T \hat{X}_A)^{-1} \hat{X}_B^T \alpha$

*A simple convex quadratic programming problem. Similarly, we have (DTWSSVM-2)

$$\begin{aligned} &Max \ -\frac{1}{2} \boldsymbol{\gamma}^T \hat{X}_A (\hat{X}_B^T \hat{X}_B)^{-1} \hat{X}_A^T \boldsymbol{\gamma} + \boldsymbol{e}_A^T \boldsymbol{\gamma} \\ &s.t. \ 0 \le \boldsymbol{\gamma}_i \le \ \mathcal{C}_2 \text{ for } i = 1, \dots, N_A \\ &\text{dual-primal conversion: } \begin{pmatrix} \boldsymbol{w}^{(2)} \\ \boldsymbol{b}^{(2)} \end{pmatrix} = \boldsymbol{u}^{(2)} = -(\hat{X}_B^T \hat{X}_B)^{-1} \hat{X}_A^T \boldsymbol{\gamma} \end{aligned}$$

DTWSSVM

TWSSVM classifier

 $class_{TWSSVM}(\mathbf{x}) = \arg\min\left\{|f_A(\mathbf{x})|, |f_B(\mathbf{x})|\right\}$

Dual version TWSSVM

Denote $\widehat{\boldsymbol{x}} = \begin{pmatrix} \boldsymbol{x} \\ \boldsymbol{1} \end{pmatrix}$ $f_A(\boldsymbol{x}) = -((\widehat{X}_A^T \widehat{X}_A)^{-1} \widehat{X}_B^T \boldsymbol{\alpha})^T \widehat{\boldsymbol{x}}$ $f_B(\boldsymbol{x}) = -((\widehat{X}_B^T \widehat{X}_B)^{-1} \widehat{X}_A^T \boldsymbol{\gamma})^T \widehat{\boldsymbol{x}}$

Kernel-based twin soft SVM - KTWSSVM

• Using a *feature map* $\phi(\cdot)$: $\mathbb{R}^n \to \mathbb{R}^l$ $(l \ge n)$ to transform the problem to a higher dimensional space for linear separability.

(KTWSSVM-1)

$$Min \qquad \frac{1}{2} \sum_{i=1}^{N_A} \left(\boldsymbol{w}^{(1)}{}^T \boldsymbol{\phi}(\boldsymbol{x}_A^i) + \boldsymbol{b}^{(1)} \right)^2 + C_1 \sum_{j=1}^{N_B} \xi_j^{(1)}$$

s.t.
$$y_j \left(\boldsymbol{w}^{(1)}{}^T \boldsymbol{\phi}(\boldsymbol{x}_B^j) + \boldsymbol{b}^{(1)} \right) \ge 1 - \xi_j^{(1)}, j = 1, \dots, N_B$$
$$\boldsymbol{w}^{(1)} \in \mathbb{R}^l, \boldsymbol{b}^{(1)} \in \mathbb{R}, \boldsymbol{\xi}^{(1)} \in \mathbb{R}_+^{N_B}$$

(KTWSSVM-2)

$$Min \qquad \frac{1}{2} \sum_{i=1}^{N_B} \left(\boldsymbol{w}^{(2)^T} \boldsymbol{\phi}(\boldsymbol{x}_B^j) + b^{(2)} \right)^2 + C_2 \sum_{i=1}^{N_A} \xi_i^{(2)}$$

s.t.
$$y_i \left(\boldsymbol{w}^{(2)^T} \boldsymbol{\phi}(\boldsymbol{x}_A^i) + b^{(2)} \right) \ge 1 - \xi_i^{(2)}, i = 1, \dots, N_A$$
$$\boldsymbol{w}^{(2)} \in \mathbb{R}^l, b^{(2)} \in \mathbb{R}, \boldsymbol{\xi}^{(2)} \in \mathbb{R}_+^{N_A}$$

Dual kernel-based TWSSVM model

$$Max - \frac{1}{2} \boldsymbol{\alpha}^{T} \boldsymbol{\phi}(X_{B}) (\boldsymbol{\phi}(X_{A})^{T} \boldsymbol{\phi}(X_{A}))^{-1} \boldsymbol{\phi}(X_{B})^{T} \boldsymbol{\alpha} + \boldsymbol{e}_{B}^{T} \boldsymbol{\alpha}$$

s.t. $0 \leq \alpha_{j} \leq C_{1}$ for $j = 1, ..., N_{B}$
** Kernel matrix $K_{A} \triangleq \boldsymbol{\phi}(X_{A})^{T} \boldsymbol{\phi}(X_{A})$

(DKTWSSVM-2)

$$Max - \frac{1}{2} \boldsymbol{\gamma}^{T} \phi(X_{A}) (\phi(X_{B})^{T} \phi(X_{B}))^{-1} \phi(X_{A})^{T} \boldsymbol{\gamma} + \boldsymbol{e}_{A}^{T} \boldsymbol{\gamma}$$

s.t. $0 \leq \boldsymbol{\gamma}_{i} \leq C_{2}$ for $i = 1, ..., N_{A}$
** Kernel matrix $K_{B} \triangleq \phi(X_{B})^{T} \phi(X_{B})$

* $\phi(X_A)^{\mathrm{T}} \in \mathbf{M}^{(l+1) \times N_A}$ formed by { $\phi(x_A^i)$ } with the last row being all 1's. $\phi(X_B)^{\mathrm{T}} \in \mathbf{M}^{(l+1) \times N_B}$ form by { $\phi(x_B^j)$ } with the last row being all 1's.