SUPPORT VECTOR MACHINES &
NEURAL NETWORKS

LECTURE 6 — SUPPORT VECTOR MACHINES
PART # I

A. Bi-classification
History, LSVM, Approximate LSVM, Soft LSVM,
Kernel-based linear SVM, nonlinear SVM

B. Multi-classification
OVO, OVA, Twin SVM

C. Prediction
Support Vector Regression (SVR)

*Copyright: Professor Shu-Cherng Fang of NCSU-ISE
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Multl-class classification

- Multi-class classification (multi-classification) is a problem
of classifying instances into one of three or more classes.
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- Pictures taken from Wikipedia



Basic ideas of multiclass classification

- If we are given a dataset in C classes and a new data-

, we may consider two commonly adopted
approaches to determine which class x belongs to:
1. OVO (one vs. one) approach

2. OVA (one vs. all) approach

point x € R™




Basic ideas of multiclass classification

- 1. OVO (one vs. one) approach
- Take each pair of different classes (C;, C;).

- Label all data-points in C; with a label +1;
Label all data-points in C; with a label — 1.

- Apply a bi-class SVM classifier to find (w, b)
and determine x € C; or x € C;.

- Assign a voting score to each class of the pair

1, if x€e(
Score(Ci)={0 ifxEle

- Sum up scores/votes over all pairs involving C;.
- Decision: x belongs to the class with the hightest total score.



OVO related issues

- How many SVM involved?

# of all possible pairs = ¢(C-1)/2
- Tie breaker?

secondary score?
- Better scoring measure?



Basic ideas of multiclass classification

- 2. OVA (one vs. all of the rest) approach
- Take each class C;.
- Label all data-points in C; with a label +1;
Label all data-points not in C; with a label — 1.
- Apply a bi-class SVM classifier to find (w, b)
and determine x € C; or x & C;.
- Assign a score to each class
Score(C;) =wlx+b
- Decision: x belongs to the class with hightest score.



OVA related issues

- How many SVM involved?

# of all possible pairs = C (K C(C-1)/2)
- Imbalanced datasets

quality of results?
- Better scoring ?

- Any approaches other than OVO and OVA ?
- tournament ?
- Which SVM model to use?
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Beyond LSSVM and KSSVM

- Motivation: Who says we should use only one separation
hyperplane (surface) for bi-classification?

Picture from ScienceDirect.com

Sepunating Flane
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Twin support vector machines - TWSVM

- Basic ideas:
() Use two non-parallel SVM to separate two distinct
classes of data;
(i) All points in one class center around a corresponding
SVM separation hyperplane while all points in the
other class are kept away from this hyperplane for a
safe distance;
(i) When a new point comes into the picture, it is
classified based on its “distance” to each
hyperplane.
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Realization of TWSVM

- Picture from researchgate.net
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Twin support vector machines
- References:

1. O.L. Mangasarian and E.W. Wild, “Multisurface Proximal Support Vector
Classification via Generalized Eigenvalues,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 28, no. 1, pp. 69-74, 2006.

2. Jayadeva, R. Khemchandani and S. Chandra, “Twin Support Vector
Machines for Pattern Classification,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 29, no. 5, pp. 905-910,. 2007.



Twin support vector machines
Problem Setting:

- Dataset S = {xi eR"|i=1,2,..,N}of N data points of n attributes.
- Two classes: S = S5, U S5,5, N Sg = @ with |S,| = N, and |Sg| = Np.

- Denote S, = {xf;l ER™|i=1,2,..,Ny},
Sp={x, eR"|j=12, .., Nz}

- Labels
y; = +1,forx}, €S,,i =12, ..,N,
y; = —1,for x}, € Sp,j = 1,2,..., Ng



Twin support vector machines

Problem Setting:
- Separation hyperplanes:

T

For S, Class: wD x +p1) =9
T

For Sz Class: w@ x4+ p@ =9

wide R,pOeRr i=1,2.

Denote ul¥) = (Z((zl))) e R i=1,2.
- Data preparation
data records of Sy : X1 = [x1, m,xﬁ’A] e M™<Na

data records of S : Xg = [xé, ...,ng] € M™XNB
unit vector e, € RM4: a column vector with all elements being 1.
unit vector ez € RVB: a column vector with all elements being 1.

Denote X% = (X‘;‘T,) e M(M+DXNa 30 )?B’.( — (XTBT,) e M(+1)XNp

€A €ép



Twin soft support vector machine model - TWSSVM
(TWSSVM-1)

Min  -¥i4 (w(1>Tauc};1 + b(l)) + ¢ B)B &Y

sty (Wl +p®) 21— &P j=1,.,N,

wD e R, bD e R, &V e RY?

(TWSSVM-2)
Min  -%i® (w(2>ij + b(2>) + ¢, Y4 &

sty (WP i +p@) 21 - P i=1,..,N,

w® e R",b@ e R, &P e R4



Observations

- Both (TWSSVM-1) and (TWSSVM-2) are convex
guadratic programming problems.

- Compared to LSSVM, (TWSSVM-1) and (TWSSVM-2)
have the same number of variables but fewer constraints.

- The total complexity of solving two smaller QPs is about
Y, of that solving LSSVM.

- The accuracy of TWSSVM is no inferior to that of LSSVM.



Example

Training Times (in Seconds)

° F om refe rence [2] Data Set TWSVM (EXE file) | TWSVM (DLL file) | SVM (DLL file)
Hepatitis (155x19) 4.37 4.85 12.7
Sonar (208x60) 4.62 6.64 24.9
Heart-statlog (270x14) 4.72 11.3 50.9
Heart-c (303x14) 8.37 14.92 68.2
Tonosphere (351x34) 9.93 25.9 102.2
Votes (435x16) 12.8 45.8 189.4
Australian (690x14) 37.4 142.1 799.2
Pima-Indian (768x8) 56.9 231.5 1078.6
CMC (1473x9) 63.4 1737.9 G827.8
Data Set TWW SV IV GEPSWVM SV

Heart-statlog (270x14) | S84.44+4.32 84.81+3.87 | 84.07x4.40

Heart-c (303><14) 83.80x5.53 B84, 44527 B2.82x5.15

Hepatitis (155x19) 820.79x12.24 | 58.29x19.07 S80.00x2.30

Ionosphere (351x34) 28.03x2.81 T5.19+5.50 S86.04 =2.37

Sonar (208><60) T7T.2610.10 (| 66.76x10.7T5 TO.TO9E5.31

Votes (435>16)

96.08+3.20

091.93+3.18

94 . 504+2.71

Pima-Indian(768>8)

T3.TOx£3.97

T4.60+£5.07

TE.68x2 .90

Aunstralian (690>14)

825.80x5.05

25.65x4.60

B85.51x4.58

CMC (1473>9)

67T.28+2.21

65.99+2_30

67.82+2.63

Accuracies have been indicated as percentages.



R - :
TWSSVM

- TWSSVM classifier

classtwssym(x) = argmin {|f4(x)|, |f5 (%) [}

- Primal version TWSSVM
fa(x) = w® x 4 p®
fo(0) =w®' x +p®@



L
Dual TWSSVM and kernel-based TWSSVM

- Basic approach:

1. Following the same procedure of finding dual LSSVM,
we can derive dual TWSSVM.

2. Following the same procedure of finding kernel-based
LSSVM, we can derive kernel-based TWSSVM.



TWSSVM model — vector form
(TWSSVM-1)
: 1 (1) K T (1)
Min > “XAW +eAb ”2 + Cler

S.t. (—1)(XBW(1) + e b(l)) > e, — &0
wh e R? pMD e R, ED e ]RIJ:’B

(TWSSVM-2)
Min 2 ||[X;w® + egb@|| + crefs?

st.  (+D(X,W? +ep bP)ze, — @
w® e R, b® e R, §? e R4



Dual TWSSVM-1 model

- Lagrangian
L(w®, b D) o, 9) = % X, w® + eAb(l)”z n
Ciehe® +a"(ep — &+ XpwD +ep hD)—gTEW

- K-K-T conditions
() X3 (Xaw™ + €,bD) + XFa = 0;
(ii) e} (Xaw™ + e,b ™) + eha = 0;
(iv) —(Xgw® +ep b)) + &V > ep, &Y > 0;
V) a’(—(Xgw +ep b))+ &V —ep)=0,07 £V =0;
(Vija>0,0=>0.



L
Dual TWSSVM-1 model

(i) says Cieg = a =0,
S0<sa < Cforj=1,..,Ng

(i)+(ii) says
x¥ (1) xh
(e () + (F)a-s
= XFXuV+ X a=0

= ulW =—XTX)'Xla [practically, use (XIX, + &l )]

- dual objective function
h(@8) = Min q pn)ep, (eps L(w®,p®, ¢, g 6)

= —%aT)?B()?Z)?A)‘l Xa+eba



Dual TWSSVM model
(DTWSSVM-1)
Max —%aT}?B()?Z)?A)‘l Xa+eha

S.1. OSCK]< 61 fOI‘j=1,...,NB

e

dual-primal conversion: (b(1>) =u = - (XTX) "X«
*A simple convex guadratic programming problem.
Similarly, we have
(DTWSSVM-2)
Max —~y"R,(RF%p) L 8] v + e}y
st. 0<y; < Cyfori=1,..,Ny

. . 2) SN
dual-primal conversion: (”I;’(ZZ)) =u® = — (XFX) "' XTy



R - :
DTWSSVM

- TWSSVM classifier

classtwssym(x) = argmin {|f4(x)|, |f5 (%) [}

- Dual version TWSSVM
I ¢
Denote X = (1)
Ara =1~ .
falx) = —( (XZXA) Xg“ )T X

fo(x) = —((REXg) ' XIy)" %



L
Kernel-based twin soft SVM - KTWSSVM

- Using a feature map ¢(-) : R™ -» R’ (I = n) to transform the problem to a
higher dimensional space for linear separability.

(KTWSSVM-1)

. 1 T , 2 |
Min EZ?’:A1 (W(l) d(xy) + b(l)) + G Z?Ifl év]( )
T 1) .
st. (W(l) d(xl) + b(1)) >1 — s‘f ) i=1, N,

wD e RLID e R, ED e RYE

(KTWSSVM-2)

. 1 «Np )T j (2) 2 Ng £(2)
Min 52i=1 (W ¢(xB) +b ) + 62 z:i=1 é—i
sty (WP @) +6@) 21 - 2 i=1,..,N,

w® e RLHP e R, §? e R4



Dual kernel-based TWSSVM model
(DKTWSSVM-1)
Max —~a’(Xp)(d(X) b (Xa) 1p(Xp) a + epa
St OSQJS Cl fOI‘j=1,...,NB

** Kernel matrix K, 2 ¢(X,)Tp(X,)

(DKTWSSVM-2)

1 _
Max — EYTCb(XA)(qb(XB)T(P(XB)) lo(X )Ty + eqy
St O Syl < 62 fOl‘i — 1,...,NA

** Kernel matrix Kz = ¢(X3)T¢p(Xz)

*P(X1)T € MED*Na formed by {¢(x})} with the last row being all 1’s.
d(Xp)T € MUFDXNs form by {¢ (xé)} with the last row being all 1’s.
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