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Multi-class classification 
• Multi-class classification (multi-classification) is a problem 

of classifying instances into one of three or more classes.

• Pictures taken from Wikipedia



Basic ideas of multiclass classification

• If we are given a dataset in 𝒞 classes and a new data-

point 𝒙 ∈ ℝ𝑛, we may consider two commonly adopted 

approaches to determine which class 𝒙 belongs to:

1. OVO (one vs. one) approach

2. OVA (one vs. all) approach



Basic ideas of multiclass classification
• 1. OVO (one vs. one) approach

- Take each pair of different classes (𝐶𝑖 , 𝐶𝑗).

- Label all data-points in 𝐶𝑖 with a label +1;

Label all data-points in 𝐶𝑗 with a label − 1.

- Apply a bi-class SVM classifier to find (𝒘, 𝑏)

and determine 𝒙 ∈ 𝐶𝑖 𝑜𝑟 𝒙 ∈ 𝐶𝑗.

- Assign a voting score to each class of the pair

𝑆𝑐𝑜𝑟𝑒 𝐶𝑖 = ቊ
1, 𝑖𝑓 𝒙 ∈ 𝐶𝑖

0, 𝑖𝑓 𝒙 ∈ 𝐶𝑗

- Sum up scores/votes over all pairs involving 𝐶𝑖 .

- Decision: 𝒙 belongs to the class with the hightest total score.



OVO related issues

• How many SVM involved?

# of all possible pairs = 𝒞(𝒞-1)/2

• Tie breaker?

secondary score?

• Better scoring measure?



Basic ideas of multiclass classification

• 2. OVA (one vs. all of the rest) approach

- Take each class 𝐶𝑖 .

- Label all data-points in 𝐶𝑖 with a label +1;

Label all data-points not in 𝐶𝑖 with a label − 1.

- Apply a bi-class SVM classifier to find (𝒘, 𝑏) 

and determine 𝒙 ∈ 𝐶𝑖 𝑜𝑟 𝒙 ∉ 𝐶𝑖.

- Assign a score to each class

𝑆𝑐𝑜𝑟𝑒 𝐶𝑖 = 𝒘𝑇𝒙 + 𝑏

- Decision: 𝒙 belongs to the class with hightest score.



OVA related issues

• How many SVM involved?

# of all possible pairs = 𝒞 (≪ 𝒞(𝒞-1)/2)

• Imbalanced datasets

quality of results?

• Better scoring ?

• Any approaches other than OVO and OVA ?

- tournament ? 

• Which SVM model to use?



Beyond LSSVM and KSSVM

• Motivation: Who says we should use only one separation

hyperplane (surface) for bi-classification?

Picture from ScienceDirect.com



Twin support vector machines - TWSVM

• Basic ideas: 

(i) Use two non-parallel SVM to separate two distinct 

classes of data;

(ii) All points in one class center around a corresponding 

SVM separation hyperplane while all points in the

other class are kept away from this hyperplane for a

safe distance;

(iii) When a new point comes into the picture, it is 

classified based on its “distance” to each 

hyperplane.



Realization of TWSVM 

• Picture from researchgate.net



Twin support vector machines

• References:

1. O.L. Mangasarian and E.W. Wild, “Multisurface Proximal Support Vector 
Classification via Generalized Eigenvalues,” IEEE Trans. Pattern Analysis and 
Machine Intelligence, vol. 28, no. 1, pp. 69-74, 2006.

2. Jayadeva, R. Khemchandani and S. Chandra, “Twin Support Vector 
Machines for Pattern Classification,” IEEE Trans. Pattern Analysis and Machine 
Intelligence, vol. 29, no. 5, pp. 905-910,. 2007.



Twin support vector machines
Problem Setting:

• Dataset 𝑆 = {𝒙𝑖 ∈ ℝ𝑛 | 𝑖 = 1,2, … , 𝑁} of 𝑁 data points of 𝑛 attributes.

• Two classes: 𝑆 = 𝑆𝐴 ∪ 𝑆𝐵 , 𝑆𝐴 ∩ 𝑆𝐵 = ∅ with 𝑆𝐴 = 𝑁𝐴 and 𝑆𝐵 = 𝑁𝐵.

• Denote 𝑆𝐴 = {𝒙𝐴
𝑖 ∈ ℝ𝑛 | 𝑖 = 1,2, … , 𝑁𝐴} ,

𝑆𝐵 = {𝒙𝐵
𝑗

∈ ℝ𝑛 | 𝑗 = 1,2, … , 𝑁𝐵}.

• Labels

𝑦𝑖 = +1, for 𝒙𝐴
𝑖 ∈ 𝑆𝐴, 𝑖 = 1,2, … , 𝑁𝐴

𝑦𝑗 = −1, for 𝒙𝐵
𝑗

∈ 𝑆𝐵 , 𝑗 = 1,2, … , 𝑁𝐵



Twin support vector machines
Problem Setting:
• Separation hyperplanes: 

For 𝑆𝐴 Class:  𝒘 𝟏 𝑻
𝒙 + 𝑏 1 = 0 

For 𝑆𝐵 Class:  𝒘 𝟐 𝑻
𝒙 + 𝑏 2 = 0 

𝒘(𝑖) ∈ ℝ𝑛, 𝑏(𝑖) ∈ ℝ, 𝑖 = 1, 2.

Denote 𝒖 𝑖 = 𝒘(𝑖)

𝑏(𝑖) ∈ ℝ𝑛+1, 𝑖 = 1, 2.

• Data preparation

data records of 𝑆A ∶ 𝑋A
𝑇 = [𝑥𝐴

1, … , 𝑥𝐴
𝑁𝐴] ∈ 𝑴𝑛×𝑁𝐴

data records of 𝑆B ∶ 𝑋B
𝑇 = [𝑥𝐵

1 , … , 𝑥𝐵
𝑁𝐵] ∈ 𝑴𝑛×𝑁𝐵

unit vector 𝒆𝐴 ∈ ℝ𝑁𝐴: a column vector with all elements being 1.

unit vector 𝒆𝐵 ∈ ℝ𝑁𝐵: a column vector with all elements being 1.

Denote ෠𝑋𝐴̅
𝑇 =

𝑋A
𝑇

𝑒𝐴
𝑇 ∈ 𝑴(𝑛+1)×𝑁𝐴 and ෠𝑋𝐵

𝑇 =
𝑋B

𝑇

𝑒𝐵
𝑇 ∈ 𝑴(𝑛+1)×𝑁𝐵



Twin soft support vector machine model - TWSSVM

(TWSSVM-1)  

𝑀𝑖𝑛
1

2
σ𝑖=1

𝑁𝐴 𝒘 1 𝑇
𝒙𝐴

𝑖 + 𝑏(1)
2

+ 𝒞1 σ𝑗=1
𝑁𝐵 𝜉𝑗

(1)

s.t. 𝑦𝑗 𝒘 1 𝑇
𝒙𝐵

𝑗
+ 𝑏(1) ≥ 1 − 𝜉𝑗

(1)
, 𝑗 = 1, … , 𝑁𝐵

𝒘(1) ∈ ℝ𝑛, 𝑏(1) ∈ ℝ, 𝝃(1) ∈ ℝ+
𝑁𝐵

(TWSSVM-2)  

𝑀𝑖𝑛
1

2
σ𝑖=1

𝑁𝐵 𝒘 2 𝑇
𝒙𝐵

𝑗
+ 𝑏(2)

2

+ 𝒞2 σ𝑖=1
𝑁𝐴 𝜉𝑖

2

s.t. 𝑦𝑖 𝒘 2 𝑇
𝒙𝐴

𝑖 + 𝑏(2) ≥ 1 − 𝜉𝑖
2

, 𝑖 = 1, … , 𝑁𝐴

𝒘(2) ∈ ℝ𝑛, 𝑏(2) ∈ ℝ, 𝝃 𝟐 ∈ ℝ+
𝑁𝐴



Observations

• Both (TWSSVM-1) and (TWSSVM-2) are convex 

quadratic programming problems.

• Compared to LSSVM, (TWSSVM-1) and (TWSSVM-2) 

have the same number of variables but fewer constraints.

• The total complexity of solving two smaller QPs is about 

¼ of that solving LSSVM.

• The accuracy of TWSSVM is no inferior to that of LSSVM.



Example 

• From reference [2]



TWSSVM

• TWSSVM classifier

𝑐𝑙𝑎𝑠𝑠𝑇𝑊𝑆𝑆𝑉𝑀 𝒙 = arg𝑚𝑖𝑛 { 𝑓𝐴 𝒙 , |𝑓𝐵 𝒙 |}

• Primal version TWSSVM

𝑓𝐴 𝒙 = 𝒘 1 𝑇
𝒙 + 𝑏 1

𝑓𝐵 𝒙 = 𝒘 2 𝑇
𝒙 + 𝑏 2



Dual TWSSVM and kernel-based TWSSVM

• Basic approach:

1. Following the same procedure of finding dual LSSVM,

we can derive dual TWSSVM.

2. Following the same procedure of finding kernel-based

LSSVM, we can derive kernel-based TWSSVM.



TWSSVM model – vector form

(TWSSVM-1)  

𝑀𝑖𝑛
1

2
𝑋𝐴𝒘 1 + 𝒆𝐴𝑏(1)

2

2
+ 𝒞1𝒆𝐵

𝑇 𝝃 1

s.t. −1 𝑋𝐵𝒘 1 + 𝒆𝐵 𝑏 1 ≥ 𝒆𝐵 − 𝝃 1

𝒘(1) ∈ ℝ𝑛, 𝑏(1) ∈ ℝ, 𝝃 1 ∈ ℝ+
𝑁𝐵

(TWSSVM-2)  

𝑀𝑖𝑛
1

2
𝑋𝐵𝒘 2 + 𝒆𝐵𝑏(2)

2

2
+ 𝒞2𝒆𝐴

𝑇𝝃 2

s.t. +1 𝑋𝐴𝒘 2 + 𝒆𝐵 𝑏 2 ≥ 𝒆𝐴 − 𝝃 2

𝒘(2) ∈ ℝ𝑛, 𝑏(2) ∈ ℝ, 𝝃 𝟐 ∈ ℝ+
𝑁𝐴



Dual TWSSVM-1 model

• Lagrangian 

𝐿 𝒘 1 , 𝑏 1 , 𝝃 1 , 𝜶, 𝜽 =
1

2
𝑋𝐴𝒘 1 + 𝒆𝐴𝑏(1)

2

2
+

𝒞1𝒆𝐵
𝑇 𝝃 1 + 𝜶𝑇(𝒆𝐵 − 𝝃 1 + 𝑋𝐵𝒘 1 + 𝒆𝐵 𝑏 1 )−𝜽𝑇𝝃 1

• K-K-T conditions

(i) 𝑋𝐴
𝑇 𝑋𝐴𝒘 1 + 𝒆𝐴𝑏 1 + 𝑋𝐵

𝑇𝜶 = 0;

(ii) 𝒆𝐴
𝑇(𝑋𝐴𝒘 1 + 𝒆𝐴𝑏 1 ) + 𝒆𝐵

𝑇 𝜶 = 0;

(iii) 𝒞1𝒆𝐵 − 𝜶 − 𝜽 = 0;

(iv) − 𝑋𝐵𝒘 1 + 𝒆𝐵 𝑏 1 + 𝝃 1 ≥ 𝒆𝐵 , 𝝃 1 ≥ 0;

(v) 𝜶𝑇(− 𝑋𝐵𝒘 1 + 𝒆𝐵 𝑏 1 + 𝝃 1 − 𝒆𝐵 ) = 0, 𝜽𝑇 𝝃 1 = 0;

(vi) 𝜶 ≥ 0, 𝜽 ≥ 0 .



Dual TWSSVM-1 model
(iii) says  𝒞1𝒆𝐵 ≥ 𝜶 ≥ 0,

⟺ 0 ≤ 𝛼𝑗 ≤ 𝒞1 for 𝑗 = 1, … , 𝑁𝐵

(i)+(ii) says 

𝑋𝐴
𝑇

𝒆𝐴
𝑇 𝑋𝐴, 𝒆𝐴

𝒘 1

𝑏 1 +
𝑋𝐵

𝑇

𝒆𝐵
𝑇 𝜶 = 𝟎

⟺ ෠𝑋𝐴
𝑇 ෠𝑋𝐴𝒖 1 + ෠𝑋𝐵

𝑇 𝜶 = 𝟎

⟺ 𝒖 1 = − ( ෠𝑋𝐴
𝑇 ෠𝑋𝐴)−1 ෠𝑋𝐵

𝑇𝜶 [practically, use ( ෠𝑋𝐴
𝑇 ෠𝑋𝐴 + 𝜀𝐼 )−1]

• dual objective function

ℎ 𝜶, 𝜽 = 𝑀𝑖𝑛
𝒘(1)∈ ℝ𝑛,𝑏(1)∈ℝ, 𝝃 1 ∈ℝ+

𝑁𝐵 𝐿 𝒘 1 , 𝑏 1 , 𝜻 1 , 𝜶, 𝜽

= −
1

2
𝜶𝑇 ෠𝑋𝐵( ෠𝑋𝐴

𝑇 ෠𝑋𝐴)−1 ෠𝑋𝐵
𝑇 𝜶 + 𝒆𝑩

𝑻 𝜶



Dual TWSSVM model 

(DTWSSVM-1) 

𝑀𝑎𝑥 −
1

2
𝜶𝑇 ෠𝑋𝐵( ෠𝑋𝐴

𝑇 ෠𝑋𝐴)−1 ෠𝑋𝐵
𝑇 𝜶 + 𝒆𝑩

𝑻 𝜶

s.t. 0 ≤ 𝛼𝑗 ≤ 𝒞1 for 𝑗 = 1, … , 𝑁𝐵

dual-primal conversion:  
𝒘 1

𝑏 1 = 𝒖 1 = − ( ෠𝑋𝐴
𝑇 ෠𝑋𝐴)−1 ෠𝑋𝐵

𝑇𝜶

*A simple convex quadratic programming problem.

Similarly, we have

(DTWSSVM-2) 

𝑀𝑎𝑥 −
1

2
𝜸𝑇 ෠𝑋𝐴( ෠𝑋𝐵

𝑇 ෠𝑋𝐵)−1 ෠𝑋𝐴
𝑇 𝜸 + 𝒆𝑨

𝑻𝜸

s.t. 0 ≤ 𝛾𝑖 ≤ 𝒞2 for 𝑖 = 1, … , 𝑁𝐴

dual-primal conversion:  
𝒘 2

𝑏 2 = 𝒖 2 = − ( ෠𝑋𝐵
𝑇 ෠𝑋𝐵)−1 ෠𝑋𝐴

𝑇𝜸



DTWSSVM

• TWSSVM classifier

𝑐𝑙𝑎𝑠𝑠𝑇𝑊𝑆𝑆𝑉𝑀 𝒙 = arg𝑚𝑖𝑛 { 𝑓𝐴 𝒙 , |𝑓𝐵 𝒙 |}

• Dual version TWSSVM

Denote ෝ𝒙 = 𝒙
1

𝑓𝐴 𝒙 = −( ෠𝑋𝐴
𝑇 ෠𝑋𝐴

−1 ෠𝑋𝐵
𝑇𝜶 )𝑇 ෝ𝒙

𝑓𝐵 𝒙 = −( ෠𝑋𝐵
𝑇 ෠𝑋𝐵

−1 ෠𝑋𝐴
𝑇𝜸 )𝑇 ෝ𝒙



Kernel-based twin soft SVM - KTWSSVM
• Using a feature map 𝜙 ⋅ ∶ ℝ𝑛 → ℝ𝑙 (𝑙 ≥ 𝑛) to transform the problem to a 

higher dimensional space for linear separability. 

(KTWSSVM-1)  

𝑀𝑖𝑛
1

2
σ𝑖=1

𝑁𝐴 𝒘 1 𝑇
𝜙(𝒙𝐴

𝑖 ) + 𝑏(1)
2

+ 𝒞1 σ𝑗=1
𝑁𝐵 𝜉𝑗

(1)

s.t. 𝑦𝑗 𝒘 1 𝑇
𝜙(𝒙𝐵

𝑗
) + 𝑏(1) ≥ 1 − 𝜉𝑗

(1)
, 𝑗 = 1, … , 𝑁𝐵

𝒘(1) ∈ ℝ𝑙, 𝑏(1) ∈ ℝ, 𝝃(1) ∈ ℝ+
𝑁𝐵

(KTWSSVM-2)  

𝑀𝑖𝑛
1

2
σ𝑖=1

𝑁𝐵 𝒘 2 𝑇
𝜙(𝒙𝐵

𝑗
) + 𝑏(2)

2

+ 𝒞2 σ𝑖=1
𝑁𝐴 𝜉𝑖

2

s.t. 𝑦𝑖 𝒘 2 𝑇
𝜙(𝒙𝐴

𝑖 ) + 𝑏(2) ≥ 1 − 𝜉𝑖
2

, 𝑖 = 1, … , 𝑁𝐴

𝒘(2) ∈ ℝ𝑙, 𝑏(2) ∈ ℝ, 𝝃 𝟐 ∈ ℝ+
𝑁𝐴



Dual kernel-based TWSSVM model 

(DKTWSSVM-1) 

𝑀𝑎𝑥 −
1

2
𝜶𝑇𝜙(𝑋𝐵)(𝜙(𝑋𝐴)T𝜙(𝑋𝐴))−1𝜙(𝑋𝐵)𝑇𝜶 + 𝒆𝑩

𝑻 𝜶

s.t. 0 ≤ 𝛼𝑗 ≤ 𝒞1 for 𝑗 = 1, … , 𝑁𝐵

** Kernel matrix 𝐾𝐴 ≜ 𝜙(𝑋𝐴)T𝜙(𝑋𝐴)

(DKTWSSVM-2) 

𝑀𝑎𝑥 −
1

2
𝜸𝑇𝜙(𝑋𝐴)(𝜙(𝑋𝐵)T𝜙(𝑋𝐵))−1𝜙(𝑋𝐴)𝑇𝜸 + 𝒆𝑨

𝑻𝜸

s.t. 0 ≤ 𝛾𝑖 ≤ 𝒞2 for 𝑖 = 1, … , 𝑁𝐴

** Kernel matrix 𝐾𝐵 ≜ 𝜙(𝑋𝐵)T𝜙(𝑋𝐵)

* 𝜙(𝑋𝐴)T ∈ 𝑴(𝑙+1)×𝑁𝐴 formed by {𝜙 𝑥𝐴
𝑖 } with the last row being all 1’s.

𝜙(𝑋𝐵)T ∈ 𝑴(𝑙+1)×𝑁𝐵 form by {𝜙 𝑥𝐵
𝑗

} with the last row being all 1’s.
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