SUPPORT VECTOR MACHINES \& NEURAL NETWORKS

LECTURE 6 - SUPPORT VECTOR MACHINES PART \# III

A. Bi-classification

History, LSVM, Approximate LSVM, Soft LSVM,
Kernel-based linear SVM, nonlinear SVM
B. Multi-classification

OVO, OVA, Twin SVM
C. Prediction

Support Vector Regression (SVR)
*Copyright: Professor Shu-Cherng Fang of NCSU-ISE

Multi-class classification

- Multi-class classification (multi-classification) is a problem of classifying instances into one of three or more classes.

- Pictures taken from Wikipedia

Basic ideas of multiclass classification

- If we are given a dataset in \mathcal{C} classes and a new datapoint $x \in \mathbb{R}^{n}$, we may consider two commonly adopted approaches to determine which class x belongs to:

1. OVO (one vs. one) approach
2. OVA (one vs. all) approach

Basic ideas of multiclass classification

- 1. OVO (one vs. one) approach
- Take each pair of different classes $\left(C_{i}, C_{j}\right)$.
- Label all data-points in C_{i} with a label +1 ; Label all data-points in C_{j} with a label -1 .
- Apply a bi-class SVM classifier to find (\boldsymbol{w}, b) and determine $x \in C_{i}$ or $x \in C_{j}$.
- Assign a voting score to each class of the pair

$$
\text { Score }\left(C_{i}\right)= \begin{cases}1, & \text { if } x \in C_{i} \\ 0, & \text { if } x \in C_{j}\end{cases}
$$

- Sum up scores/votes over all pairs involving C_{i}.
- Decision: x belongs to the class with the hightest total score.

OVO related issues

- How many SVM involved?
\# of all possible pairs $=\mathcal{C}(\mathcal{C}-1) / 2$
- Tie breaker?
secondary score?
- Better scoring measure?

Basic ideas of multiclass classification

- 2. OVA (one vs. all of the rest) approach
- Take each class C_{i}.
- Label all data-points in C_{i} with a label +1 ; Label all data-points not in C_{i} with a label -1 .
- Apply a bi-class SVM classifier to find (w, b) and determine $x \in C_{i}$ or $x \notin C_{i}$.
- Assign a score to each class
$\operatorname{Score}\left(C_{i}\right)=\boldsymbol{w}^{T} \boldsymbol{x}+b$
- Decision: \boldsymbol{x} belongs to the class with hightest score.

OVA related issues

- How many SVM involved?
\# of all possible pairs $=\mathcal{C}(\ll \mathcal{C}(\mathcal{C}-1) / 2)$
- Imbalanced datasets quality of results?
- Better scoring?
- Any approaches other than OVO and OVA ?
- tournament?
- Which SVM model to use?

Beyond LSSVM and KSSVM

- Motivation: Who says we should use only one separation hyperplane (surface) for bi-classification?

Picture from ScienceDirect.com

(a)

(b)

Twin support vector machines - TWSVM

- Basic ideas:
(i) Use two non-parallel SVM to separate two distinct classes of data;
(ii) All points in one class center around a corresponding SVM separation hyperplane while all points in the other class are kept away from this hyperplane for a safe distance;
(iii) When a new point comes into the picture, it is classified based on its "distance" to each hyperplane.

Realization of TWSVM

- Picture from researchgate.net

Twin support vector machines

- References:

1. O.L. Mangasarian and E.W. Wild, "Multisurface Proximal Support Vector Classification via Generalized Eigenvalues," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 1, pp. 69-74, 2006.
2. Jayadeva, R. Khemchandani and S. Chandra, "Twin Support Vector Machines for Pattern Classification," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 29, no. 5, pp. 905-910,. 2007.

Twin support vector machines

Problem Setting:

- Dataset $S=\left\{x^{i} \in \mathbb{R}^{n} \mid i=1,2, \ldots, N\right\}$ of N data points of n attributes.
- Two classes: $S=S_{A} \cup S_{B}, S_{A} \cap S_{B}=\varnothing$ with $\left|S_{A}\right|=N_{A}$ and $\left|S_{B}\right|=N_{B}$.
- Denote $S_{A}=\left\{\boldsymbol{x}_{A}^{i} \in \mathbb{R}^{n} \mid i=1,2, \ldots, N_{A}\right\}$,

$$
S_{B}=\left\{\boldsymbol{x}_{B}^{j} \in \mathbb{R}^{n} \mid j=1,2, \ldots, N_{B}\right\} .
$$

- Labels

$$
\begin{aligned}
& y_{i}=+1, \text { for } \boldsymbol{x}_{A}^{i} \in S_{A}, i=1,2, \ldots, N_{A} \\
& y_{j}=-1, \text { for } \boldsymbol{x}_{B}^{j} \in S_{B}, j=1,2, \ldots, N_{B}
\end{aligned}
$$

Twin support vector machines

Problem Setting:

- Separation hyperplanes:

$$
\begin{aligned}
& \text { For } S_{A} \text { Class: } \boldsymbol{w}^{(\mathbf{1})^{\boldsymbol{T}}} \boldsymbol{x}+b^{(1)}=0 \\
& \text { For } S_{B} \text { Class: } \boldsymbol{w}^{(\mathbf{2})^{\boldsymbol{T}}} \boldsymbol{x}+b^{(2)}=0 \\
& \boldsymbol{w}^{(i)} \in \mathbb{R}^{n}, b^{(i)} \in \mathbb{R}, i=1,2 . \\
& \text { Denote } \boldsymbol{u}^{(i)}=\binom{\boldsymbol{w}^{(i)}}{b^{(i)}} \in \mathbb{R}^{n+1}, i=1,2 .
\end{aligned}
$$

- Data preparation
data records of $S_{\mathrm{A}}: \quad X_{\mathrm{A}}^{T}=\left[x_{A}^{1}, \ldots, x_{A}^{N_{A}}\right] \in \boldsymbol{M}^{n \times N_{A}}$
data records of $S_{\mathrm{B}}: \quad X_{\mathrm{B}}^{T}=\left[x_{B}^{1}, \ldots, x_{B}^{N_{B}}\right] \in \boldsymbol{M}^{n \times N_{B}}$
unit vector $\boldsymbol{e}_{A} \in \mathbb{R}^{N_{A}}$: a column vector with all elements being 1.
unit vector $\boldsymbol{e}_{B} \in \mathbb{R}^{N_{B}}$: a column vector with all elements being 1.
Denote $\hat{X}_{A}^{T}=\binom{x_{A}^{T}}{e_{A}^{T}} \in \boldsymbol{M}^{(n+1) \times N_{A}}$ and $\hat{X}_{B}^{T}=\binom{X_{B}^{T}}{e_{B}^{T}} \in \boldsymbol{M}^{(n+1) \times N_{B}}$

Twin soft support vector machine model - TWSSVM

(TWSSVM-1)
Min $\frac{1}{2} \sum_{i=1}^{N_{A}}\left(\boldsymbol{w}^{(1)^{T}} \boldsymbol{x}_{A}^{i}+b^{(1)}\right)^{2}+\mathcal{C}_{1} \sum_{j=1}^{N_{B}} \xi_{j}^{(1)}$
s.t. $\quad y_{j}\left(\boldsymbol{w}^{(1)^{T}} \boldsymbol{x}_{B}^{j}+b^{(1)}\right) \geq 1-\xi_{j}^{(1)}, j=1, \ldots, N_{B}$

$$
\boldsymbol{w}^{(1)} \in \mathbb{R}^{n}, b^{(1)} \in \mathbb{R}, \xi^{(1)} \in \mathbb{R}_{+}^{N_{B}}
$$

(TWSSVM-2)

$$
\begin{array}{ll}
\text { Min } & \frac{1}{2} \sum_{i=1}^{N_{B}}\left(\boldsymbol{w}^{(2)^{T}} \boldsymbol{x}_{B}^{j}+b^{(2)}\right)^{2}+\mathcal{C}_{2} \sum_{i=1}^{N_{A}} \xi_{i}^{(2)} \\
\text { s.t. } & y_{i}\left(\boldsymbol{w}^{(2)^{T}} \boldsymbol{x}_{A}^{i}+b^{(2)}\right) \geq 1-\xi_{i}^{(2)}, i=1, \ldots, N_{A} \\
& \boldsymbol{w}^{(2)} \in \mathbb{R}^{n}, b^{(2)} \in \mathbb{R}, \xi^{(2)} \in \mathbb{R}_{+}^{N_{A}}
\end{array}
$$

Observations

- Both (TWSSVM-1) and (TWSSVM-2) are convex quadratic programming problems.
- Compared to LSSVM, (TWSSVM-1) and (TWSSVM-2) have the same number of variables but fewer constraints.
- The total complexity of solving two smaller QPs is about $1 / 4$ of that solving LSSVM.
- The accuracy of TWSSVM is no inferior to that of LSSVM.

Example

Training Times (in Seconds)

- From reference [2]

Data Set	TWSVM (EXE file)	TWSVM (DLL file)	SVM (DLL file)
Hepatitis (155×19)	4.37	4.85	12.7
Sonar (208×60)	4.62	6.64	24.9
Heart-statlog (270×14)	4.72	11.3	50.9
Heart-c (303×14)	8.37	14.92	68.2
Ionosphere (351×34)	9.93	25.9	102.2
Votes (435×16)	12.8	45.8	189.4
Australian (690×14)	37.4	142.1	799.2
Pima-Indian (768×8)	56.9	231.5	1078.6
CMC (1473×9)	63.4	1737.9	6827.8

Data Set	TWVVM	GEPSVM	SVM
Heart-statlog (270×14)	84.44 ± 4.32	84.81 ± 3.87	84.07 ± 4.40
Heart-c (303×14)	83.80 ± 5.53	84.44 ± 5.27	82.82 ± 5.15
Hepatitis (155×19)	80.79 ± 12.24	58.29 ± 19.07	80.00 ± 8.30
Ionosphere (351×34)	88.03 ± 2.81	75.19 ± 5.50	86.04 ± 2.37
Sonar (208×60)	77.26 ± 10.10	66.76 ± 10.75	79.79 ± 5.31
Votes (435×16)	96.08 ± 3.29	91.93 ± 3.18	94.50 ± 2.71
Pima-Indian (768×8)	73.70 ± 3.97	74.60 ± 5.07	76.68 ± 2.90
Australian (690×14)	85.80 ± 5.05	85.65 ± 4.60	85.51 ± 4.58
CMC (1473×9)	67.28 ± 2.21	65.99 ± 2.30	67.82 ± 2.63

Accuracies have been indicated as percentages.

TWSSVM

- TWSSVM classifier

$$
\operatorname{class}_{T W S S V M}(\boldsymbol{x})=\operatorname{argmin}\left\{\left|f_{A}(\boldsymbol{x})\right|,\left|f_{B}(\boldsymbol{x})\right|\right\}
$$

- Primal version TWSSVM

$$
\begin{aligned}
& f_{A}(x)=\boldsymbol{w}^{(1)^{T}} \boldsymbol{x}+b^{(1)} \\
& f_{B}(x)=\boldsymbol{w}^{(2)^{T}} \boldsymbol{x}+b^{(2)}
\end{aligned}
$$

Dual TWSSVM and kernel-based TWSSVM

- Basic approach:

1. Following the same procedure of finding dual LSSVM, we can derive dual TWSSVM.
2. Following the same procedure of finding kernel-based LSSVM, we can derive kernel-based TWSSVM.

TWSSVM model - vector form

(TWSSVM-1)

$$
\begin{array}{ll}
\text { Min } & \frac{1}{2}\left\|X_{A} \boldsymbol{w}^{(1)}+\boldsymbol{e}_{A} b^{(1)}\right\|_{2}^{2}+\mathcal{C}_{1} \boldsymbol{e}_{B}^{T} \xi^{(1)} \\
\text { s.t. } & (-1)\left(X_{B} \boldsymbol{w}^{(1)}+\boldsymbol{e}_{B} b^{(1)}\right) \geq \boldsymbol{e}_{B}-\xi^{(1)} \\
& \boldsymbol{w}^{(1)} \in \mathbb{R}^{n}, b^{(1)} \in \mathbb{R}, \xi^{(1)} \in \mathbb{R}_{+}^{N_{B}}
\end{array}
$$

(TWSSVM-2)

$$
\begin{array}{ll}
\text { Min } & \frac{1}{2}\left\|X_{B} \boldsymbol{w}^{(2)}+\boldsymbol{e}_{B} b^{(2)}\right\|_{2}^{2}+\mathcal{C}_{2} \boldsymbol{e}_{A}^{T} \xi^{(2)} \\
\text { s.t. } & (+1)\left(X_{A} \boldsymbol{w}^{(2)}+\boldsymbol{e}_{B} b^{(2)}\right) \geq \boldsymbol{e}_{A}-\xi^{(2)} \\
& \boldsymbol{w}^{(2)} \in \mathbb{R}^{n}, b^{(2)} \in \mathbb{R}, \xi^{(2)} \in \mathbb{R}_{+}^{N_{A}}
\end{array}
$$

Dual TWSSVM-1 model

- Lagrangian

$$
\begin{aligned}
& L\left(\boldsymbol{w}^{(1)}, b^{(1)}, \xi^{(1)}, \boldsymbol{\alpha}, \boldsymbol{\theta}\right)=\frac{1}{2}\left\|X_{A} \boldsymbol{w}^{(1)}+\boldsymbol{e}_{A} b^{(1)}\right\|_{2}^{2}+ \\
& \mathcal{C}_{1} \boldsymbol{e}_{B}^{T} \xi^{(1)}+\alpha^{T}\left(\boldsymbol{e}_{B}-\xi^{(1)}+X_{B} \boldsymbol{w}^{(1)}+\boldsymbol{e}_{B} b^{(1)}\right)-\boldsymbol{\theta}^{T} \xi^{(1)}
\end{aligned}
$$

- K-K-T conditions
(i) $X_{A}^{T}\left(X_{A} \boldsymbol{w}^{(1)}+\boldsymbol{e}_{A} b^{(1)}\right)+X_{B}^{T} \boldsymbol{\alpha}=0$;
(ii) $\boldsymbol{e}_{A}^{T}\left(X_{A} \boldsymbol{w}^{(1)}+\boldsymbol{e}_{A} b^{(1)}\right)+\boldsymbol{e}_{B}^{T} \boldsymbol{\alpha}=0$;
(iii) $\mathcal{C}_{1} \boldsymbol{e}_{B}-\boldsymbol{\alpha}-\boldsymbol{\theta}=0$;
(iv) $-\left(X_{B} \boldsymbol{w}^{(1)}+\boldsymbol{e}_{B} b^{(1)}\right)+\xi^{(1)} \geq \boldsymbol{e}_{B}, \xi^{(1)} \geq 0$;
(v) $\boldsymbol{\alpha}^{T}\left(-\left(X_{B} \boldsymbol{w}^{(1)}+\boldsymbol{e}_{B} b^{(1)}\right)+\xi^{(1)}-\boldsymbol{e}_{B}\right)=0, \boldsymbol{\theta}^{T} \xi^{(1)}=0$;
(vi) $\alpha \geq 0, \theta \geq 0$.

Dual TWSSVM-1 model

(iii) says $\mathcal{C}_{1} \boldsymbol{e}_{B} \geq \alpha \geq 0$,

$$
\Leftrightarrow 0 \leq \alpha_{j} \leq \mathcal{C}_{1} \text { for } j=1, \ldots, N_{B}
$$

(i)+(ii) says

$$
\begin{aligned}
& \binom{x_{A}^{T}}{e_{A}^{T}}\left(X_{A}, \boldsymbol{e}_{A}\right)\binom{w^{(1)}}{b^{(1)}}+\binom{x_{B}^{T}}{e_{B}^{T}} \boldsymbol{\alpha}=\mathbf{0} \\
\Leftrightarrow & \hat{X}_{A}^{T} \widehat{X}_{A} \boldsymbol{u}^{(1)}+\hat{X}_{B}^{T} \boldsymbol{\alpha}=\mathbf{0} \\
\Leftrightarrow & \boldsymbol{u}^{(1)}=-\left(\widehat{X}_{A}^{T} \hat{X}_{A}\right)^{-1} \hat{X}_{B}^{T} \boldsymbol{\alpha}\left[\text { practically, use }\left(\hat{X}_{A}^{T} \hat{X}_{A}+\varepsilon I\right)^{-1}\right]
\end{aligned}
$$

- dual objective function

$$
\begin{aligned}
h(\boldsymbol{\alpha}, \boldsymbol{\theta}) & =\operatorname{Min}_{\boldsymbol{w}^{(1)} \in \mathbb{R}^{n}, b^{(1)} \in \mathbb{R}, \xi^{(1)} \in \mathbb{R}_{+}^{N_{B}}} L\left(\boldsymbol{w}^{(1)}, b^{(1)}, \boldsymbol{\zeta}^{(1)}, \boldsymbol{\alpha}, \boldsymbol{\theta}\right) \\
& =-\frac{1}{2} \boldsymbol{\alpha}^{T} \hat{X}_{B}\left(\hat{X}_{A}^{T} \hat{X}_{A}\right)^{-1} \hat{X}_{B}^{T} \boldsymbol{\alpha}+\boldsymbol{e}_{B}^{T} \boldsymbol{\alpha}
\end{aligned}
$$

Dual TWSSVM model

(DTWSSVM-1)
$\operatorname{Max} \quad-\frac{1}{2} \boldsymbol{\alpha}^{T} \hat{X}_{B}\left(\hat{X}_{A}^{T} \hat{X}_{A}\right)^{-1} \hat{X}_{B}^{T} \boldsymbol{\alpha}+\boldsymbol{e}_{B}^{T} \boldsymbol{\alpha}$

$$
\text { s.t. } \quad 0 \leq \alpha_{j} \leq \mathcal{C}_{1} \text { for } j=1, \ldots, N_{B}
$$

dual-primal conversion: $\binom{w^{(1)}}{b^{(1)}}=\boldsymbol{u}^{(1)}=-\left(\hat{X}_{A}^{T} \hat{X}_{A}\right)^{-1} \widehat{X}_{B}^{T} \boldsymbol{\alpha}$
*A simple convex quadratic programming problem.
Similarly, we have
(DTWSSVM-2)
$\operatorname{Max}-\frac{1}{2} \gamma^{T} \hat{X}_{A}\left(\hat{X}_{B}^{T} \widehat{X}_{B}\right)^{-1} \hat{X}_{A}^{T} \gamma+\boldsymbol{e}_{A}^{T} \gamma$
s.t. $0 \leq \gamma_{i} \leq \mathcal{C}_{2}$ for $i=1, \ldots, N_{A}$
dual-primal conversion: $\left(\begin{array}{l}w^{(2)} \\ b \\ b^{(2)}\end{array}\right)=\boldsymbol{u}^{(2)}=-\left(\widehat{X}_{B}^{T} \widehat{X}_{B}\right)^{-1} \widehat{X}_{A}^{T} \gamma$

DTWSSVM

- TWSSVM classifier

$$
\operatorname{class}_{T W S S V M}(\boldsymbol{x})=\operatorname{argmin}\left\{\left|f_{A}(\boldsymbol{x})\right|,\left|f_{B}(\boldsymbol{x})\right|\right\}
$$

- Dual version TWSSVM

$$
\begin{aligned}
& \text { Denote } \widehat{\boldsymbol{x}}=\binom{x}{1} \\
& f_{A}(x)=-\left(\left(\hat{X}_{A}^{T} \hat{X}_{A}\right)^{-1} \hat{X}_{B}^{T} \boldsymbol{\alpha}\right)^{T} \widehat{x} \\
& f_{B}(x)=-\left(\left(\hat{X}_{B}^{T} \hat{X}_{B}\right)^{-1} \hat{X}_{A}^{T} \gamma\right)^{T} \widehat{x}
\end{aligned}
$$

Kernel-based twin soft SVM - KTWSSVM

- Using a feature map $\phi(\cdot): \mathbb{R}^{n} \rightarrow \mathbb{R}^{l}(l \geq n)$ to transform the problem to a higher dimensional space for linear separability.
(KTWSSVM-1)
Min $\frac{1}{2} \sum_{i=1}^{N_{A}}\left(\boldsymbol{w}^{(1)^{T}} \phi\left(\boldsymbol{x}_{A}^{i}\right)+b^{(1)}\right)^{2}+\mathcal{C}_{1} \sum_{j=1}^{N_{B}} \xi_{j}^{(1)}$
s.t. $\quad y_{j}\left(\boldsymbol{w}^{(1)^{T}} \phi\left(\boldsymbol{x}_{B}^{j}\right)+b^{(1)}\right) \geq 1-\xi_{j}^{(1)}, j=1, \ldots, N_{B}$

$$
\boldsymbol{w}^{(1)} \in \mathbb{R}^{l}, b^{(1)} \in \mathbb{R}, \xi^{(1)} \in \mathbb{R}_{+}^{N_{B}}
$$

(KTWSSVM-2)
Min $\frac{1}{2} \sum_{i=1}^{N_{B}}\left(\boldsymbol{w}^{(2)^{T}} \phi\left(\boldsymbol{x}_{B}^{j}\right)+b^{(2)}\right)^{2}+\mathcal{C}_{2} \sum_{i=1}^{N_{A}} \xi_{i}^{(2)}$
s.t. $\quad y_{i}\left(\boldsymbol{w}^{(2)^{T}} \phi\left(\boldsymbol{x}_{A}^{i}\right)+b^{(2)}\right) \geq 1-\xi_{i}^{(2)}, i=1, \ldots, N_{A}$

$$
\boldsymbol{w}^{(2)} \in \mathbb{R}^{l}, b^{(2)} \in \mathbb{R}, \xi^{(2)} \in \mathbb{R}_{+}^{N_{A}}
$$

Dual kernel-based TWSSVM model

(DKTWSSVM-1)

$$
\begin{aligned}
& \operatorname{Max}-\frac{1}{2} \alpha^{T} \phi\left(X_{B}\right)\left(\phi\left(X_{A}\right)^{\mathrm{T}} \phi\left(X_{A}\right)\right)^{-1} \phi\left(X_{B}\right)^{T} \alpha+\boldsymbol{e}_{B}^{T} \alpha \\
& \text { s.t. } \quad 0 \leq \alpha_{j} \leq \mathcal{C}_{1} \text { for } j=1, \ldots, N_{B} \\
& \text { ** Kernel matrix } K_{A} \triangleq \phi\left(X_{A}\right)^{\mathrm{T}} \phi\left(X_{A}\right)
\end{aligned}
$$

(DKTWSSVM-2)
$\operatorname{Max}-\frac{1}{2} \gamma^{T} \phi\left(X_{A}\right)\left(\phi\left(X_{B}\right)^{\mathrm{T}} \phi\left(X_{B}\right)\right)^{-1} \phi\left(X_{A}\right)^{T} \gamma+\boldsymbol{e}_{A}^{T} \gamma$
s.t. $\quad 0 \leq \gamma_{i} \leq \mathcal{C}_{2}$ for $i=1, \ldots, N_{A}$
${ }^{* *}$ Kernel matrix $K_{B} \triangleq \phi\left(X_{B}\right)^{\mathrm{T}} \phi\left(X_{B}\right)$
${ }^{*} \phi\left(X_{A}\right)^{\mathrm{T}} \in \boldsymbol{M}^{(l+1) \times N_{A}}$ formed by $\left\{\phi\left(x_{A}^{i}\right)\right\}$ with the last row being all 1 's.
$\phi\left(X_{B}\right)^{\mathrm{T}} \in M^{(l+1) \times N_{B}}$ form by $\left\{\phi\left(x_{B}^{j}\right)\right\}$ with the last row being all 1 's.

