SUPPORT VECTOR MACHINES &
NEURAL NETWORKS

LECTURE 5 - SUPPORT VECTOR MACHINES
PART # Il

A. Bi-classification
History, LSVM, Approximate LSVM, Soft LSVM,
Kernel-based linear SVM, nonlinear SVM

B. Multi-classification
OVO, OVA, Twin SVM

C. Prediction
Support Vector Regression (SVR)

*Copyright: Professor Shu-Cherng Fang of NCSU-ISE
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SVM for not linearly separable data sets
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- Will LSVM, Approximate LSVM, LSSVM work ?
- How well can they be?
- Any better SVM classifier?



L
SVM for not linearly separable data sets

- Basic ideas:
1. Reformulate the problem in a higher dimensional
space for linear separability
(Kernel Method): LSVM with kernel functions

2. Adopt nonlinear surface to separate data points
apart in the original space

- Quadratic surface SVM
- Double-well potential function based SVM



D
|dea of kernel based SVM

- Feature map: a function ¢(-): R® —» R}, withl > n,
that maps all data points to a higher dimensional space
for linear separation.

- Example 1: ||x||5 < 1, ||x]|3 > 1,

¢1(x): R* = R?, p1(x) = ¢4 (2)
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A different feature map

- Picture from Lecture 3, C19 Machine Learning, Hilary 2015, A. Zisserman

(5= (2) = e 8 B

1Z= ﬁmlmg
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Other feature maps

- Example 2: (quadratic feature)

¢ (x): R? - R3® (homogeneous quadratic feature)
¢3 (0" = (xf, xF,V2x1%,)

$,(x): R? - R® (inhomogeneous quadratic feature)

0P )" = (1; \/Exp \/Exz» x12, \/Ex1x2; x22)
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Other feature maps

- Example 3: (cubic feature)

¢% (x): R* > R*

$3 (07T = (7, 2722, x1X3, X3)

d(x): R2 - R1O

¢3 (x)T = (1, xq, x5, x12, X1X2, x%, xf, x12x2» x1x22: xg’)

** What are the effects of ¢, and ¢;?
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Kernel-based soft SVM - KSSVM

- Using a feature map ¢(-) : R® - R! (I > n) to transform
the problem to a higher dimensional space for linear
separability.

- Build upon LSSVM

- Primal model

min ~|wll3 + C X, &

st y(wlp(x)+b)=1-¢,i=1,..,N (KSSVM)
weR!, beR, &§€RY

where C > 0is a given parameter.

** More variables involved than using LSSVM.
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From LSSVM to KSSVM

- Primal models

min = [wl|3 + C £, &;

st yi(wlxt+b)>1-¢,i=1,..,N (LSSVM)
weR", beR, E€RY

where C > 01is a given parameter.

VS.

min ~ w3+ C ¥, &

st y(wlp(x)+b)=1-¢,i=1,..,N (KSSVM)
weR, beR, £eRY

where C > 01is a given parameter.
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Kernel-based soft SVM - KSSVM

- SVM classifier
classsym (x) = sign(f(x))

- Primal version KSSVM
f(x)=wiep(x)+b
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From LSSVM to KSSVM

- Dual models:
1 . .
max -- Nl N ey () )y + B e
S.L. £V=1 a;y; = 0 (DLSSVM)
0<aq;<C, i=1,2,..,N

then
(DKSSVM) = ?



L
Dual kernel-based soft SVM (DKSSVM)

- Lagrangian dual model

1 . .
max - - L2 ayip (DT () yja; + YL«
S.L. ?]:1 a;y; = 0 (DKSSVM)
0<eg;<C,i=12,..,N

- The “kernel matrix” is defined as K = (K;;) € Myxy(R)
with elements K;; such that

Kij = K(xi,xj) £ qb(xi)Tgb(xj)
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Dual kernel-based soft SVM (DKSSVM)

Kernel matrix

Kij = K(x',2)) = ¢(x) p(x)
Example 1: For ¢, feature map

Ky = (@) 1= D) () =<0 >+ = [Py = ]

Example 2: For ¢, feature map: K;;= d)z(xi)Tqbz(xj)

. . . . . . T
= (L2, Vaxh, ()’ VExiah, () (192 V2], () V2, () )
=1+2 (x{x{ + xéxg) + ((xi')z (x{)2+(x§)2 (xg)z) + 2(x{x§x{xg)
=1+ 2(xi)ij - ((x")TJncj)2

T .
= ((x‘) x’ + 1)? - polynomial kernel with r = 1,d = 2.
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How difficult to solve DKSSVM?

- Lagrangian dual model

max-— 121 1% Yi l]y]a]-l_ ZNal
S.t. i=1 a;y; = 0 (DKSSVM)
0<a;<C,i=12,..N

where K;; = K(xt,x)) 2 ¢(xi)T¢(xj)

- Given any feature map ¢, corresponding K is psd
and DKSSVM becomes a convex quadratic program
with N bounded variables and only one linear equality
constraint.

- In practice, we may use a kernel matrix K = (K;;)

without knowing the feature map ¢ (x).
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Kernel-based soft SVM - DKSSVM

- SVM classifier
classsyy (x) = sign(f(x))

Dual version DKSSVM
f) =Y, ayidp(xDTp(x) + b(ay)
= ZiES a;y; K(x‘,x) + b



L
Kernel matrix

- To make sure that K;; = K(x', x’) is the inner product of
¢(x') and ¢(x/) in the feature space, such that

(1) DKSSVM is an easily solved convex QP,

(2) there is a chance to solve KSSVM,

we need K to be symmetric and positive semidefinite
(Mercer’s condition).

- Commonly used kernels:
1. Polynomial kernel of degree d = 1,2, ...

K(x',x)) = ((xi)Txf +1)% (homogeneous, if r = 0)

(inhomogeneous, if r > 0)

* popular in image processing
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Polynomial kernels
Example 1: (inhomogeneous degree 2)
For x € RY, K(x!,x/) = (xx/ + 1)2 forr=1,d =2,
we have ¢(x)T = (1,v2x,x?) € R3 such that

(,b(x) ¢(xf)—1+2x x1+(x) (xf) =(x xf+1)2

Example 2: (homogeneous degree 2)
For x € R%, K(x!,x/) = ((xi)ij)2 forr=0,d = 2,
we have ¢ (x)T = (x2,v2x,x,,x5) € R® such that

¢ () ¢ (2)) =(x) (xl) +(xd) (xg)2+z(x;'xgx{xg)=((xi)Txf )?

**General form ¢(x): contains all polynomial terms up to degree d.
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Kernel matrix

Commonly used kernels:
2. Gaussian kernel with o € R\{0}

=

2
207 )
*no prior information, general purpose

K(x',x7) =exp (-
**General form ¢(x) in infinite dimensional feature space.

3. Gaussian Radial basis function (RBF) kernel with y > 0
K(x',x)) = exp (—y ||x" — xf||2 )
*no prior information, general purpose

**General form ¢(x) : see https://en.wikipedia.org/wiki/Radial_basis_function_kernel



L
Kernel matrix

Commonly used kernels:
4. Laplace RBF kernel with ¢ > 0

K(x',x)) = exp (—1/0 [|x' = x/|| )

*no prior information, general purpose

5. Sigmoid kernelwith f > 0,60 e R
K(x', ) = tanh (B(x) x/ +0)

* proxy for neural networks
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Quality of kernel-based SVM

- Two major factors:
1. Like LSSVM, the parameter C plays a role.

2. The choice of an appropriate kernel matrix
(and its parameters) is important.
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Effect of kernel matrix

- Picture from Machine Learning 10-315, Aarti Singh, Oct 28, 2020,CMU
Iris dataset, 1 vs 23, Polynomial Kernel degree 2 (C = 1)

) v] Degree III | Separable Bound
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Effect of kernel matrix

- Picture from Machine Learning 10-315, Aarti Singh, Oct 28, 2020,CMU
Iris dataset, 1 vs 23, Gaussian RBF kernel (C = 1,0 = 1)
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Effect of kernel matrix

- Picture from Machine Learning 10-315, Aarti Singh, Oct 28, 2020,CMU
Iris dataset, 1 vs 23, Gaussian RBF kernel (C = 10,0 = 1)

o vmema [0 ] [ separmiie Bouns
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Effect of kernel matrix

- Picture from Machine Learning 10-315, Aarti Singh, Oct 28, 2020,CMU
Chessboard dataset, Polynomial kernel (d = 10,C = 1)

Eolynamizl v | Dease | 10 | [~ Separable Bound

Ma. of Support YWectors: 147 (48.0%)
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Effect of kernel matrix

- Picture from Machine Learning 10-315, Aarti Singh, Oct 28, 2020,CMU
Chessboard dataset, Gaussian RBF kernel (C = 1,0 = 2)

(7] Separable sowa [ 1|
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Quality of kernel-based SVM

- Two major factors:
1. Like LSSVM, the parameter C plays a role.

2. The choice of an appropriate kernel matrix
(and its parameters) is important.

Question: How to choose/design right ones?
- theoretical analysis?
- computational experiments !



|deas of choosing parameters
- Example: choosing parameter C
1. Define an error or score measure:
for example, MSE (mean squares error),
MAPE (mean absolute percentage error),
1/Iwli3, or By i (Wx' + b)), ..
2. Conduct computational experiments with different
value of C :
- statistically meaningful
3. Plot resulting error measures against C.
4. Find the elbow/ turning point value of C.

** check many other “cross-validation” methods.



Design kernel matrices

Combining kernels:
Kernels Ky (x',x7), K,(x', x7), ..., K, (x, x) are given,
1. K(xhx)) 2 K (x4, %)) + Kp(xh, x7)
IS a kernel matrix
2. K(x',x)) £ BK,(x',x7), >0
IS a kernel matrix
3. Search for the best kernel combination

K 2 a Ky + - +a,K,
for somea; >0, ...,a, > 0.

4. When K;K, = K,K; (Commuting)
K(xt,x7) 2 K, (x', x))K,(x', x/) is a kernel matrix



Kernel algebra
1. If K(x,2/) = (1) Ax’ with matrix A being symmetric and
positive semidefinite,
then K is a kernel matrix and ¢(x) = Lx, where A = LL'.

2.1f K(xt,x7) = f(x)f(x))Ky (2, 2/ ) with

function f(x): R* > R and K, (x},x/) = ¢, (xi)Tcl)l (x)),
then K is a kernel matrix and ¢(x) = f(x)¢,(x).

3. If K(xi,xf) = aK; (xi,xj) with scalar a > 0,

and Ky (x%,x7) = qbl(xi)T¢1(xj),
then ¢(x) = Vagp,(x).



L
Kernel algebra

4.1f K(x'x)) = Ky (xh, x7) + Ky (xt, /),
and K, (x4, /) = ¢ (xt)" ¢, (),
K, (3, 30) = ¢ (xt) o (2,
then ¢ (x) = (i;gg)

Example: For x € R?,

Ky (at, 20y = ((68) 20 + 1) with ¢y (%) = (1, %, )"

K, (2, x0) = ((x) 27 + 0)2 with ¢, (x) = (2, 2,25, x2)T
we have ¢(x) = (1, xq1, x5, X2, 2x,x,,x2)T and

K (xf,20) = ((x1) ) + 1)2.



Kernel matrix and feature map

- Feature map = kernel matrix is clear.
- How about the other direction?

Recall that we mentioned the Mercer's theorem previously. Here is how the theorem goes. Let Ty be a
linear operator such that for f € La(X), Tk (f)(x) = [ K(z,y)f(y)dy.

Theorem 6.2 (Mercer’s theorem) Assume that K is a continuous symmetric positive semi-definite ker-

nel over X x X, where X is compact. Then there erists an orthonormal basis {e;(-) :i=1,---,} of L2(X)
consisting of eigenfunctions of Ty such that

T
K(z.y) =Y Aiei(z)e(y),
i=1
where X; = 0 are the corresponding eigenvalues.

It also implies another representation under the regular Lo space:

() = (Vhei(z), v Azea(2), - ).

The quantities \; and e;(x) are from Theorem 6.2.

- From: http://faculty.washington.edu/yenchic/19A stat535/Lec6 kernel.pdf



http://faculty.washington.edu/yenchic/

Kernel tricks of using DKSSVM

- SVM classifier
classsyy (x) = sign(f(x))
Dual version DKSSVM
fx) = Xt ayid(x) d(x) + b(ay)
= Yies aiyi K(x'x) +b

- Classifier can be learnt in the higher dimensional feature
space without explicitly computing ¢ (x).

- All that is needed is the kernel K (x, x/).

- Complexity of learning depends on N, not on L.



Comparisons and discussions

- LSSVM vs. KSSVM
- applicability
- complexity

- Properties of each commonly used kernel
- polynomial
- Gaussian
- RBF
- sigmoid

- Drawbacks of kernel-based SVM models



Kernel-free Nonlinear SVM

- Drawbacks of kernel-based SVM models:
- No universal rule to select a suitable kernel function.
- Performance depends heavily on kernel parameters.
- Singularity of kernel matrix may cause
computational problems.

- ldea: How about generating a nonlinear separation
surface directly without using kernel functions?



Soft Quadratic Surface SVM

- Joint work with Dr. Jian Luo ( j8RKZZ#E)T 2014 )

@ Separate by a quadratic surface: {f(x) = %ﬂ:TW:B + bl'x + c = 0}.

@ Adopt the relative geometrical margin based on all data points.

Kernel-free SQSSVM model [5]:

e SV Chuandr atfac aify MO0 sapar abile Cane

gl

N N
min Z [lwz) + b||3 + C ZE,-
i=1 =1

o P . ,

st. y® (;m(')TW:c{’) +:::(*}Tb+e) >
j=1,1¢ N,
WeS", beR", ceR, £ eRY.

(SQSSVM)

Figure: SQSSVM
where (' > ( is the penalty parameter for data points.



L
Double Well Potential Surface SVM

- Joint work with D. Zheming Gao (ZFASEZEZE)T 2020 )
- Ideal: Separate by a degree 4 polynomial DWP surface

1/1 2 9
{F(a:) =3 (§||B:1: —ql|3 - d) + §:BTA:E +blr o= o} |

N
L fw o] 1,5
min EHIO A] F—I—§||b||2—|—CZICz

(4) ! (i) Ty, (4) 1 ()T 5 .(4) T (i) :: ,ﬁ’f:;-.._\ "Bl
s.t. Y —z Wz + —x Az +b 2\ +c) =21 -(;, ALY
2 2 ) A ‘ :';-_"f. we
rank(W) = 1 Tl

n(nd1)
wecsT 2 T ACS? beR™, cER, ¢ €RY. _
(owpsvm)  Figure: DWPSVM
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