SUPPORT VECTOR MACHINES & NEURAL NETWORKS

LECTURE 5 – SUPPORT VECTOR MACHINES PART # II

- A. Bi-classification
 - History, LSVM, Approximate LSVM, Soft LSVM, Kernel-based linear SVM, nonlinear SVM
- B. Multi-classification OVO, OVA, Twin SVM
- C. PredictionSupport Vector Regression (SVR)

*Copyright: Professor Shu-Cherng Fang of NCSU-ISE

SVM for not linearly separable data sets

- Will LSVM, Approximate LSVM, LSSVM work?
- How well can they be?
- Any better SVM classifier?

SVM for not linearly separable data sets

- Basic ideas:
 - Reformulate the problem in a higher dimensional space for linear separability (Kernel Method): LSVM with kernel functions
 - 2. Adopt nonlinear surface to separate data points apart in the original space
 - Quadratic surface SVM
 - Double-well potential function based SVM

Idea of kernel based SVM

- Feature map: a function $\phi(\cdot)$: $\mathbb{R}^n \to \mathbb{R}^l$, with $l \ge n$, that maps all data points to a higher dimensional space for linear separation.
- Example 1: $||x||_2^2 < 1$, $||x||_2^2 > 1$,

$$\phi_1(\mathbf{x}): \mathbb{R}^2 \to \mathbb{R}^3, \, \phi_1(\mathbf{x}) = \phi_1\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1 \\ \frac{x_2}{1 - x_1^2 - x_2^2} \end{pmatrix} = \begin{pmatrix} x \\ 1 - \|\mathbf{x}\|^2 \end{pmatrix}$$

A different feature map

Picture from Lecture 3, C19 Machine Learning, Hilary 2015, A. Zisserman

$$\phi_2^h\left(\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}\right) = \left(x_1^2, x_2^2, \sqrt{2}x_1x_2\right)^T$$

Other feature maps

Example 2: (quadratic feature)

$$\phi_2^h(\mathbf{x}) \colon \mathbb{R}^2 \to \mathbb{R}^3$$
 (homogeneous quadratic feature)
 $\phi_2^h(\mathbf{x})^T = (x_1^2, x_2^2, \sqrt{2}x_1x_2)$
 $\phi_2(\mathbf{x}) \colon \mathbb{R}^2 \to \mathbb{R}^6$ (inhomogeneous quadratic feature)
 $\phi_2(\mathbf{x})^T = (1, \sqrt{2}x_1, \sqrt{2}x_2, x_1^2, \sqrt{2}x_1x_2, x_2^2)$

Other feature maps

Example 3: (cubic feature)

$$\phi_{3}^{h}(\mathbf{x}): \mathbb{R}^{2} \to \mathbb{R}^{4}$$

$$\phi_{3}^{h}(\mathbf{x})^{T} = (x_{1}^{3}, x_{1}^{2}x_{2}, x_{1}x_{2}^{2}, x_{2}^{3})$$

$$\phi_{3}(\mathbf{x}): \mathbb{R}^{2} \to \mathbb{R}^{10}$$

 $\phi_3(\mathbf{x})^T = (1, x_1, x_2, x_1^2, x_1 x_2, x_2^2, x_1^3, x_1^2 x_2, x_1 x_2^2, x_2^3)$

** What are the effects of ϕ_2 and ϕ_3 ?

Kernel-based soft SVM - KSSVM

- Using a *feature map* $\phi(\cdot): \mathbb{R}^n \to \mathbb{R}^l \ (l \ge n)$ to transform the problem to a higher dimensional space for linear separability.
- Build upon LSSVM
- Primal model

$$\begin{aligned} &\min \quad \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^N \xi_i \\ &\text{s.t.} \ \ y_i \Big(w^T \phi(x^i) + b \Big) \geq 1 - \xi_i, i = 1, \dots, N \quad \text{(KSSVM)} \\ &\quad w \in \mathbb{R}^l, \ b \in \mathbb{R}, \ \xi \in \mathbb{R}^N_+ \\ &\text{where } C > 0 \text{ is a given parameter.} \end{aligned}$$

** More variables involved than using LSSVM.

From LSSVM to KSSVM

Primal models

$$\begin{aligned} &\min \ \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^N \xi_i \\ &s.t. \ y_i \big(w^T x^i + b \big) \geq 1 - \xi_i, i = 1, ..., N \quad \text{(LSSVM)} \\ & w \in \mathbb{R}^n, \ b \in \mathbb{R}, \ \xi \in \mathbb{R}^N_+ \\ &\text{where } C > 0 \text{ is a given parameter.} \end{aligned}$$

VS.

$$\min \ \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^N \xi_i$$
s.t. $y_i (w^T \phi(x^i) + b) \ge 1 - \xi_i, i = 1, ..., N$ (KSSVM)
$$w \in \mathbb{R}^l, \ b \in \mathbb{R}, \ \xi \in \mathbb{R}^N_+$$
where $C > 0$ is a given parameter.

Kernel-based soft SVM - KSSVM

SVM classifier

$$class_{SVM}(\mathbf{x}) = sign(f(\mathbf{x}))$$

Primal version KSSVM

$$f(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) + b$$

From LSSVM to KSSVM

Dual models:

$$\max -\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} y_{i} ((\mathbf{x}^{i})^{T} \mathbf{x}^{j}) y_{j} \alpha_{j} + \sum_{i}^{N} \alpha_{i}$$
s.t.
$$\sum_{i=1}^{N} \alpha_{i} y_{i} = 0 \qquad \text{(DLSSVM)}$$

$$0 \le \alpha_{i} \le C, \quad i = 1, 2, ..., N$$

then

(DKSSVM) = ?

Dual kernel-based soft SVM (DKSSVM)

Lagrangian dual model

$$\max - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} y_{i} \phi(\mathbf{x}^{i})^{T} \phi(\mathbf{x}^{j}) y_{j} \alpha_{j} + \sum_{i=1}^{N} \alpha_{i}$$
s.t.
$$\sum_{i=1}^{N} \alpha_{i} y_{i} = 0 \qquad \text{(DKSSVM)}$$

$$0 \le \alpha_{i} \le C, i = 1, 2, ..., N$$

• The "kernel matrix" is defined as $K = (K_{ij}) \in M_{N \times N}(\mathbb{R})$ with elements K_{ij} such that

$$K_{ij} = K(\mathbf{x}^i, \mathbf{x}^j) \triangleq \phi(\mathbf{x}^i)^T \phi(\mathbf{x}^j)$$

Dual kernel-based soft SVM (DKSSVM)

Kernel matrix

$$K_{ij} = K(\mathbf{x}^i, \mathbf{x}^j) \triangleq \phi(\mathbf{x}^i)^T \phi(\mathbf{x}^j)$$

Example 1: For ϕ_1 feature map

$$K_{ij} = ((x^i)^T, 1 - ||x^i||^2) {x^j \choose 1 - ||x^j||^2} = \langle x^i, x^j \rangle + (1 - ||x^i||^2)(1 - ||x^j||^2)$$

Example 2: For ϕ_2 feature map: $K_{ij} = \phi_2(x^i)^T \phi_2(x^j)$

$$= (1, \sqrt{2}x_1^i, \sqrt{2}x_2^i, (x_1^i)^2, \sqrt{2}x_1^ix_2^i, (x_2^i)^2) \left(1, \sqrt{2}x_1^j, \sqrt{2}x_2^j, (x_1^j)^2, \sqrt{2}x_1^jx_2^j, (x_2^j)^2\right)^T$$

$$= 1 + 2\left(x_1^i x_1^j + x_2^i x_2^j\right) + \left(\left(x_1^i\right)^2 \left(x_1^j\right)^2 + \left(x_2^i\right)^2 \left(x_2^j\right)^2\right) + 2\left(x_1^i x_2^i x_1^j x_2^j\right)$$

$$= 1 + 2(x^i)^T x^j + ((x^i)^T x^j)^2$$

$$=((x^i)^T x^j + 1)^2$$
 --- polynomial kernel with $r=1, d=2$.

How difficult to solve DKSSVM?

Lagrangian dual model

$$\max - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i y_i K_{ij} y_j \alpha_j + \sum_{i}^{N} \alpha_i$$
s.t.
$$\sum_{i=1}^{N} \alpha_i y_i = 0 \qquad \text{(DKSSVM)}$$

$$0 \le \alpha_i \le C, i = 1, 2, ..., N$$
where
$$K_{ij} = K(\mathbf{x}^i, \mathbf{x}^j) \triangleq \phi(\mathbf{x}^i)^T \phi(\mathbf{x}^j)$$

- Given any feature map ϕ , corresponding K is psd and DKSSVM becomes a convex quadratic program with N bounded variables and only one linear equality constraint.
- In practice, we may use a kernel matrix $K = (K_{ij})$ without knowing the feature map $\phi(x)$.

Kernel-based soft SVM - DKSSVM

SVM classifier

$$class_{SVM}(\mathbf{x}) = sign(f(\mathbf{x}))$$

Dual version DKSSVM

$$f(\mathbf{x}) = \sum_{i=1}^{N} \alpha_i y_i \, \phi(\mathbf{x}^i)^T \phi(\mathbf{x}) + \mathbf{b}(\alpha_i)$$
$$= \sum_{i \in S} \alpha_i y_i \, K(\mathbf{x}^i, \mathbf{x}) + \overline{\mathbf{b}}$$

Kernel matrix

- To make sure that $K_{ij} = K(x^i, x^j)$ is the inner product of $\phi(x^i)$ and $\phi(x^j)$ in the feature space, such that
 - (1) DKSSVM is an easily solved convex QP,
 - (2) there is a chance to solve KSSVM, we need *K* to be symmetric and positive semidefinite (Mercer's condition).
- Commonly used kernels:
 - 1. Polynomial kernel of degree d = 1, 2, ...

$$K(x^i, x^j) = ((x^i)^T x^j + r)^d$$
 (homogeneous, if $r = 0$)

(inhomogeneous, if $r > 0$)

^{*} popular in image processing

Polynomial kernels

Example 1: (inhomogeneous degree 2)

For
$$x \in \mathbb{R}^1$$
, $K(x^i, x^j) = (x^i x^j + 1)^2$ for $r = 1, d = 2$,
we have $\phi(x)^T = (1, \sqrt{2}x, x^2) \in \mathbb{R}^3$ such that $\phi(x^i)^T \phi(x^j) = 1 + 2x^i x^j + (x^i)^2 (x^j)^2 = (x^i x^j + 1)^2$

Example 2: (homogeneous degree 2)

For
$$\mathbf{x} \in \mathbb{R}^2$$
, $K(\mathbf{x}^i, \mathbf{x}^j) = ((\mathbf{x}^i)^T \mathbf{x}^j)^2$ for $\mathbf{r} = \mathbf{0}$, $\mathbf{d} = \mathbf{2}$, we have $\phi(\mathbf{x})^T = (x_1^2, \sqrt{2}x_1x_2, x_2^2) \in \mathbb{R}^3$ such that
$$\phi(\mathbf{x}^i)^T \phi(\mathbf{x}^j) = (x_1^i)^2 (x_1^j)^2 + (x_2^i)^2 (x_2^j)^2 + 2(x_1^i x_2^i x_1^j x_2^j) = ((\mathbf{x}^i)^T \mathbf{x}^j)^2$$

**General form $\phi(x)$: contains all polynomial terms up to degree d.

Kernel matrix

Commonly used kernels:

2. Gaussian kernel with $\sigma \in \mathbb{R} \setminus \{0\}$

$$K(x^{i}, x^{j}) = exp\left(-\frac{\|x^{i}-x^{j}\|_{2}^{2}}{2\sigma^{2}}\right)$$

- * no prior information, general purpose
- **General form $\phi(x)$ in infinite dimensional feature space.
- 3. Gaussian Radial basis function (RBF) kernel with $\gamma > 0$

$$K(x^{i}, x^{j}) = \exp(-\gamma ||x^{i} - x^{j}||_{2}^{2})$$

- * no prior information, general purpose
- ** $General\ form\ \phi(x)$: see https://en.wikipedia.org/wiki/Radial_basis_function_kernel

Kernel matrix

Commonly used kernels:

4. Laplace RBF kernel with $\sigma > 0$

$$K(x^{i}, x^{j}) = exp(-1/\sigma ||x^{i} - x^{j}||_{2})$$

* no prior information, general purpose

5. Sigmoid kernel with $\beta > 0$, $\theta \in \mathbb{R}$

$$K(\mathbf{x}^i, \mathbf{x}^j) = tanh\left(\boldsymbol{\beta}(\mathbf{x}^i)^T \mathbf{x}^j + \boldsymbol{\theta}\right)$$

* proxy for neural networks

Quality of kernel-based SVM

- Two major factors:
 - 1. Like LSSVM, the parameter *C* plays a role.
 - 2. The choice of an appropriate kernel matrix (and its parameters) is important.

• Picture from Machine Learning 10-315, Aarti Singh, Oct 28, 2020, CMU Iris dataset, 1 vs 23, Polynomial Kernel degree 2 (C=1)

• Picture from Machine Learning 10-315, Aarti Singh, Oct 28, 2020, CMU Iris dataset, 1 vs 23, Gaussian RBF kernel ($C=1, \sigma=1$)

• Picture from Machine Learning 10-315, Aarti Singh, Oct 28, 2020, CMU Iris dataset, 1 vs 23, Gaussian RBF kernel ($C=10, \sigma=1$)

• Picture from Machine Learning 10-315, Aarti Singh, Oct 28, 2020, CMU Chessboard dataset, Polynomial kernel (d=10, C=1)

• Picture from Machine Learning 10-315, Aarti Singh, Oct 28, 2020, CMU Chessboard dataset, Gaussian RBF kernel ($\mathcal{C}=1, \sigma=2$)

Quality of kernel-based SVM

- Two major factors:
 - 1. Like LSSVM, the parameter *C* plays a role.
 - 2. The choice of an appropriate kernel matrix (and its parameters) is important.

Question: How to choose/design right ones?

- theoretical analysis?
- computational experiments!

Ideas of choosing parameters

- Example: choosing parameter C
 - 1. Define an error or score measure:

```
for example, MSE (mean squares error), MAPE (mean absolute percentage error), 1/\|\mathbf{w}\|_2^2, or \sum_{i=1}^N y_i (\mathbf{w}^T \mathbf{x}^i + b), ...
```

- 2. Conduct computational experiments with different value of *C*:
 - statistically meaningful
- 3. Plot resulting error measures against C.
- 4. Find the elbow/ turning point value of C.

^{**} check many other "cross-validation" methods.

Design kernel matrices

Combining kernels:

Kernels $K_1(x^i, x^j)$, $K_2(x^i, x^j)$, ..., $K_p(x^i, x^j)$ are given,

- 1. $K(\mathbf{x}^i, \mathbf{x}^j) \triangleq K_1(\mathbf{x}^i, \mathbf{x}^j) + K_2(\mathbf{x}^i, \mathbf{x}^j)$ is a kernel matrix
- 2. $K(\mathbf{x}^i, \mathbf{x}^j) \triangleq \beta K_1(\mathbf{x}^i, \mathbf{x}^j), \beta > 0$ is a kernel matrix
- 3. Search for the best kernel combination

$$K \triangleq \alpha_1 K_1 + \dots + \alpha_p K_p$$

for $some \ \alpha_1 > 0, \dots, \alpha_p > 0$.

4. When $K_1K_2 = K_2K_1$ (Commuting) $K(\mathbf{x}^i, \mathbf{x}^j) \triangleq K_1(\mathbf{x}^i, \mathbf{x}^j)K_2(\mathbf{x}^i, \mathbf{x}^j)$ is a kernel matrix

Kernel algebra

- 1. If $K(x^i, x^j) = (x^i)^T A x^j$ with matrix A being symmetric and positive semidefinite, then K is a kernel matrix and $\phi(x) = Lx$, where $A = LL^T$.
- 2. If $K(\mathbf{x}^i, \mathbf{x}^j) = f(\mathbf{x}^i) f(\mathbf{x}^j) K_1(\mathbf{x}^i, \mathbf{x}^j)$ with function $f(\mathbf{x}) : \mathbb{R}^n \to \mathbb{R}$ and $K_1(\mathbf{x}^i, \mathbf{x}^j) = \phi_1(\mathbf{x}^i)^T \phi_1(\mathbf{x}^j)$, then K is a kernel matrix and $\phi(\mathbf{x}) = f(\mathbf{x}) \phi_1(\mathbf{x})$.
- 3. If $K(\mathbf{x}^i, \mathbf{x}^j) = \alpha K_1(\mathbf{x}^i, \mathbf{x}^j)$ with scalar $\alpha > 0$, and $K_1(\mathbf{x}^i, \mathbf{x}^j) = \phi_1(\mathbf{x}^i)^T \phi_1(\mathbf{x}^j)$, then $\phi(\mathbf{x}) = \sqrt{\alpha}\phi_1(\mathbf{x})$.

Kernel algebra

4. If
$$K(\mathbf{x}^{i}, \mathbf{x}^{j}) = K_{1}(\mathbf{x}^{i}, \mathbf{x}^{j}) + K_{2}(\mathbf{x}^{i}, \mathbf{x}^{j}),$$

and $K_{1}(\mathbf{x}^{i}, \mathbf{x}^{j}) = \phi_{1}(\mathbf{x}^{i})^{T} \phi_{1}(\mathbf{x}^{j}),$
 $K_{2}(\mathbf{x}^{i}, \mathbf{x}^{j}) = \phi_{2}(\mathbf{x}^{i})^{T} \phi_{2}(\mathbf{x}^{j}),$
then $\phi(\mathbf{x}) = \begin{pmatrix} \phi_{1}(\mathbf{x}) \\ \phi_{2}(\mathbf{x}) \end{pmatrix}.$

Example: For $x \in \mathbb{R}^2$,

$$K_1(x^i, x^j) = ((x^i)^T x^j + 1)^1$$
 with $\phi_1(x) = (1, x_1, x_2)^T$
 $K_2(x^i, x^j) = ((x^i)^T x^j + 0)^2$ with $\phi_2(x) = (x_1^2, 2x_1x_2, x_2^2)^T$
we have $\phi(x) = (1, x_1, x_2, x_1^2, 2x_1x_2, x_2^2)^T$ and $K(x^i, x^j) = ((x^i)^T x^j + 1)^2$.

Kernel matrix and feature map

- Feature map \Rightarrow kernel matrix is clear.
- How about the other direction?

Recall that we mentioned the Mercer's theorem previously. Here is how the theorem goes. Let T_K be a linear operator such that for $f \in L_2(\mathcal{X})$, $T_K(f)(x) = \int K(x,y)f(y)dy$.

Theorem 6.2 (Mercer's theorem) Assume that K is a continuous symmetric positive semi-definite kernel over $\mathcal{X} \times \mathcal{X}$, where \mathcal{X} is compact. Then there exists an orthonormal basis $\{e_i(\cdot): i=1,\cdots,\}$ of $L_2(\mathcal{X})$ consisting of eigenfunctions of T_K such that

$$K(x,y) = \sum_{i=1}^{n} \lambda_i e_i(x) e_i(y),$$

where $\lambda_i \geq 0$ are the corresponding eigenvalues.

It also implies another representation under the regular L_2 space:

$$\phi(x) = (\sqrt{\lambda_1}e_1(x), \sqrt{\lambda_2}e_2(x), \cdots).$$

The quantities λ_i and $e_i(x)$ are from Theorem 6.2.

From: http://faculty.washington.edu/yenchic/19A_stat535/Lec6_kernel.pdf

Kernel tricks of using DKSSVM

SVM classifier

$$class_{SVM}(\mathbf{x}) = sign(f(\mathbf{x}))$$

Dual version DKSSVM

$$f(\mathbf{x}) = \sum_{i=1}^{N} \alpha_i y_i \, \phi(\mathbf{x}^i)^T \phi(\mathbf{x}) + \mathbf{b}(\alpha_i)$$
$$= \sum_{i \in S} \alpha_i y_i \, K(\mathbf{x}^i, \mathbf{x}) + \overline{\mathbf{b}}$$

- Classifier can be learnt in the higher dimensional feature space without explicitly computing $\phi(x)$.
- All that is needed is the kernel $K(x^i, x^j)$.
- Complexity of learning depends on N, not on l.

Comparisons and discussions

- LSSVM vs. KSSVM
 - applicability
 - complexity
- Properties of each commonly used kernel
 - polynomial
 - Gaussian
 - RBF
 - sigmoid

Drawbacks of kernel-based SVM models

Kernel-free Nonlinear SVM

- Drawbacks of kernel-based SVM models:
 - No universal rule to select a suitable kernel function.
 - Performance depends heavily on kernel parameters.
 - Singularity of kernel matrix may cause computational problems.
- Idea: How about generating a nonlinear separation surface directly without using kernel functions?

Soft Quadratic Surface SVM

- Joint work with Dr. Jian Luo (海南大学罗健老师 2014)
 - Separate by a quadratic surface: $\{f(x) = \frac{1}{2}x^T\mathbf{W}x + b^Tx + c = 0\}.$
 - Adopt the relative geometrical margin based on all data points.

Kernel-free SQSSVM model [5]:

$$\begin{split} & \min \quad \sum_{i=1}^{N} \|\mathbf{W} \boldsymbol{x}^{(i)} + \boldsymbol{b}\|_{2}^{2} + C \sum_{i=1}^{N} \xi_{i} \\ & s.t. \quad \boldsymbol{y}^{(i)} \left(\frac{1}{2} \boldsymbol{x}^{(i)} \mathbf{W} \boldsymbol{x}^{(i)} + \boldsymbol{x}^{(i)} \mathbf{b} + c \right) \geqslant 1 - \xi_{i} \\ & i = 1, \cdots, N, \\ & \mathbf{W} \in \mathbb{S}^{n}, \ \boldsymbol{b} \in \mathbb{R}^{n}, \ c \in \mathbb{R}, \ \boldsymbol{\xi} \in \mathbb{R}^{N}_{+}. \end{split} \tag{SQSSVM}$$

Figure: SQSSVM

where C>0 is the penalty parameter for data points.

Double Well Potential Surface SVM

- Joint work with D. Zheming Gao (东大高哲明老师 2020)
- Ideal: Separate by a degree 4 polynomial DWP surface

$$\left\{ F(x) = \frac{1}{2} \left(\frac{1}{2} || \mathbf{B} x - q ||_2^2 - d \right)^2 + \frac{1}{2} x^T \mathbf{A} x + b^T x + c = 0 \right\}.$$

$$\min \quad \frac{1}{2} \left\| \begin{bmatrix} \mathbf{W} & \mathbf{0} \\ \mathbf{0} & \mathbf{A} \end{bmatrix} \right\|_{F}^{2} + \frac{1}{2} \|\mathbf{b}\|_{2}^{2} + C \sum_{i=1}^{N} \zeta_{i}$$

$$\text{s.t.} \quad y^{(i)} \left(\frac{1}{2} \mathbf{z}^{(i)^{T}} \mathbf{W} \mathbf{z}^{(i)} + \frac{1}{2} \mathbf{x}^{(i)^{T}} \mathbf{A} \mathbf{x}^{(i)} + \mathbf{b}^{T} \mathbf{x}^{(i)} + c \right) \geqslant 1 - \zeta_{i},$$

$$i = 1, \dots, N,$$

$$\operatorname{rank}(\mathbf{W}) = 1$$

$$\mathbf{W} \in \mathbb{S}^{\frac{n(n+1)}{2} + n + 1}, \ \mathbf{A} \in \mathbb{S}^{n}, \ \mathbf{b} \in \mathbb{R}^{n}, \ c \in \mathbb{R}, \ \zeta \in \mathbb{R}^{N}_{+}.$$

 $\zeta \in \mathbb{R}_+^N$. (DWPSVM)

Figure: DWPSVM