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Lecture 6: Totally Unimodular Matrices

Let A be an m x n integral matrix with full row rank and b an m x 1

integral vector.
LP: min {c'z: Az =b, = >0}

IP: min {c'z: Az =b, z € 27}



Motivation

- Under what conditions that LP has an integral optimal
solution?

- Hint:

o Fundamental Theory of LP.

o Basic solution: z = (zp,zy) = (B~'b,0)



Unimodular Matrix

- Aunimodular matrix M is a square integer matrix with
determinant +1 or —1.

- Equivalently, it is an integer matrix that is invertible over
the integers, i.e., there is an integer matrix M’ which is its
inverse (these are equivalent under Cramer's rule).

- Thus every equation Mx = b, where M and b are both
integer, and M is unimodular, has an integer solution.

- Answer:
The optimal bases of LP form a unimodular matrix.



Examples of unimodular matrix

- Unimodular matrices form a group under matrix
multiplication, hence the following are unimodular:

- ldentity matrix, negative identity matrix
- The inverse of a unimodular matrix
- The product of two unimodular matrices




Question

- How do we know the optimal bases before solving the
problem?

- Under what conditions do all bases form a unimodular
matrix?

- Answer: Total unimodularity



-
Total Unimodularity (TUM)

- Definition: A matrix A is totally unimodular if every square
non-singular submatrix is unimodular, i.e., every sub-
determinant of A is either +1, -1, or 0.

B

Observation: If A'is TUM, then a;; € {~1,0,1].

Examples:



Properties

Proposition: Let A be a TUM matrix. Multiplying any row or column of

A by —1 results in a TUM matrix.

Proposition: Let A be a TUM matrix. Then the following matrices are

all TUM:
— A, AT, [A1, [A,-A]

o Theorem 12.7 A matrix A is totally unimodular if
and only if any one of the matrices AT, —A, (A, A),
(A, T) is totally unimodular.



Main Theorem

- Theorem: The standard form LP with integral right-hand-
side vector b has an integral optimal solution if its
constraint matrix A is totally unimodular.

- Proof: Cramer’s Rule



Cramer’s Rule

- Swiss mathematician Gabriel Cramer (1704 - 1752)

- 1750 - Introduction to the Analysis of Lines of Algebraic
Curves

- 1729 suggested to Colin Maclaurin (1698 - 1746)
- Theorem:

Let A be an n x n matrix with det(A) # 0. Then the

unique solution of the system Az = b is given by

Li = Fet(A)
where A; is obtained by replacing its ith column of

A with b.

_ det(A;) i=1.2....n



Expansion of determinant

It is also possible to expand a determinant along a row or column using Laplace’s formula, which is
efficient for relatively small matrices. To do this along row 7, say, we write

det(A Z A4iCij= Z (-1,

j=I
where the C; ; represents the i,/ element of the matrix cofactors, ie. C; ;is (- 1)/ times the
minor M; j which is the determinant of the matrix that results from A by removing the i-th row and
the j-th column, and n is the length of the matrix.



-
Extensions

Definition: A polyhedron is integral if every extreme point is integral.

Proposition: Let A be an m x n integral TUM matrix. the following

polyhedrons are all integral for any vectors b and u of integers:

{re R": Az < b}
{re R": Az > b}
{reR": Az <b, = > 0}
{reR": Az =0, = > 0}

{reR": Az=0b, 0 <z <u}
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Main Result

Theorem: |If Ais an m x n integral matrix with full row rank, the

following are equivalent:

e Every basis B is UM, i.e., det B = +1.

e The extreme points of {x € R": Ax =b, x > 0} are integral for all

integral vectors b.

e Every basis has an integral inverse.



-
Corollary

Corollary: If A is an m x n integral matrix, the following are equivalent:

e Ais TUM.

e The extreme points of {x € R" : Az < b, = > 0} are integral for all

integral vectors b.

e Every nonsingular submatrix of A has an integral inverse.

v/ Hoffman and Kruskal (1956)
v/ Veinott and Dantzig (1968): a short proof.



-
More facts

e A linear programming problem with a totally unimodular coefficient
matrix yields an optimal solution in integers for any objective vector

and any integer vector on the right-hand side of the constraints.

e There are non-unimodular problems which yield integral optimal
solutions for any objective vector but only certain integer constraint

vectors. (Chapter 6-8, Eugene Lawler's Book)

e There are non-unimodular problems which yield integral optimal
solutions for any integer constraint vector but only certain objective
vectors. (Page 165-168, Eugene Lawler's Book)



Question
- Given a matrix A, how do we know it is totally unimodular
or not?
Matrices that are not TUM: Matrices that are TUM:
1 -1 0 0 -1 01000
1 i (1)}2 (—1 1—100\ (01111\
s B | LB i 0 -1 1 -1 0 10111
0 0 -1 1 -1 10010
\-1 0 0 -1 1) \1 00 0 0)
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I

=1 =



What do we know?

e There do not seem to be any easily tested necessary and sufficient

conditions for total unimodularity.

e There exist some characterization theorems for totally unimodular
matrices. (Ghouila-Houri (1962) and Camion (1965))

e There is also an easily tested set of sufficient (but not necessary)

conditions for total unimodularity.



Camion’s Characterization

Definition: A matrix A is Eulerian if the sum of the elements in each

row and each column is even.

Theorem: A (0,+1,—1) matrix A is totally unimodular if and only if the

sum of the elements in each Eulerian square submatrix is a multiple of 4.

v/ Camion (1963a,1963b,1965)

Eulerian Matrices that are not TUM:

1 0 -1 1 10
1 -1 0 0 11
0 1 1 1 O 1



Ghouila-Hourr’'s Characterization

Theorem: An m x n integral matrix A is totally unimodular if and only

if for each set R C {1,2,--- ,m} can be divided into two disjoint sets R,
and Ry such that

Y aj— Y ae{-1,0,1}, j=12,--,n

i€Ry icR>

v/ Ghouila-Houri (1962), Berge (1973) and Commoner (1973)
v/ Tamir (1976): a short proof based on Camion’s theorem.



-
Hoffman’s Sufficient Conditions

Theorem: A (0,+1,—1) matrix A is totally unimodular if both of the

following conditions are satisfied:
e Each column contains at most two nonzero elements.
e The rows of A can be partitioned into two sets A; and A such that

two nonzero entries in a column are in the same set of rows if they

have different signs and in different sets of rows if they have the same

sign.

Corollary: A (0,+1,—1) matrix A is totally unimodular if it contains no

more than one +1 and no more than one —1 in each column.



Examples

TUM matrices

=i =1

1 -1 0
=1 L =l

4

1 —i

0 -1
0 0 -1

0
-1
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Corollary

Definition: A (0,+1) matrix A has the consecutive one’s property if for

any column j, a;j = a;y; = 1 with i < i’ implies a;; =1 for i <1 < 7'.

Corollary: A matrix with the consecutive one'’s property is TUM.

01000
(01111\
10111
10010
\10 0 0 0)




Integral Circulation Theorem

Theorem: The node-arc incidence matrix of a directed graph is TUM.

Why? Exactly one 1 and one —1 in each column.

Integral Circulation Theorem: For the minimum cost circulation
problem, if all lower bounds and capacities are integers and there exists a

finite optimal circulation, then there exists an integral optimal circulation
(whether or not arc costs are integers).



Minimum Cost Circulation Problem

min ) _; ; aijTi;
8.
> Tii — X iTij =0, Vi,

0<l; <=z <cj, Vi, J.

Introducing the slack variables:

—Tij +1ij = —lij

Tij + Sij

[
&



Minimum Cost Circulation Problem

min a’ r
s.t.
A(xz,r,s) =b,
. T 20K
G 00 0
A=\ I, |I,| O b= | —I
I.. | 0 |1, c

where ( is the arc-node incidence matrix of the network.



Question

- Why is the matrix A totally unimodular?




-
Matching and Bipartite Graph

Theorem: A graph is bipartite if and only if its node-edge incidence

matrix is totally unimodular.

/ Asratian et al. Bipartite Graphs and Their Applications, Cambridge
University Press, 1998. (Page 16, Theorem 2.3.1)

Konig-Egervary Theorem: Let G be a bipartite graph. The maximum
number of arcs in a matching is equal to the minimum number of nodes in

a covering of arcs by nodes.

Why? By LP duality.



References

Berge, C., Graphs and hypergraphs, North-Holland, Amsterdam, 1973.

Camion, P., Matrices totalement unimodulaires et problemes combinatoires,
Thése, Université Libre de Bruxelles, Février, 1963.

Camion, P., Caractérisation des matrices unimodulaires, Cahiers Centre Etudes
Rech, 5, (1963) no.4.

Camion, P., Characterization of titally unimodular matrices, Proceedings of the
American Mathematical Society, 15(5), (1965) 1068-1073.

Commoner, F.G., A sufficient condition for a matrix to be totally unimodular,
Networks, 3(4), (1973) 351-365.

Ghouila-Houri, A., Caractérisation des matrices totalement unimodulaires,
Comptes Rendus Hebdomadaires des Séances de I'’Académie des Science (Paris),

254, (1962) 1192-1194.



References

Hoffman, A.J., Kruskal, J.B., Integral boundary points of convex polyhedral, In
Kuhn, HW., Tucker, AW., (eds.) Linear Inequalities and Related Systems,

Princeton University Press, Princeton, 1956, Chapter 13.
Tamir, A., On totally unimodular matrices, Networks, 6(4), (1976) 373-382.

Veinott, Jr., A.F., Dantzig, G.B., Integral extreme points, SIAM Review, 10(3),
(1968) 371-372.



