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Commonly used notations

Sets: 𝑆, 𝑇, 𝑈, 𝑉 (uppercase, italic)

Scalars, constants: 𝛼, 𝛽, 𝛾, 𝓈, 𝓇, 𝓉, 𝑎, 𝑏, 𝑐 lowercase

Vectors: 𝐱, 𝐲, 𝐳, 𝐩, 𝐮, 𝐯 (lowercase, bold, column vectors)

Matrices: 𝐴𝑚×𝑛, 𝑀𝑛×𝑛 (uppercase, dimensionality)

Real spaces: ℝ𝑛, ℝ, ℝ+
𝑛 , ℝ++

𝑛 , 𝑁 𝐴 , 𝑅(𝐴)

Matrix spaces: 𝑺𝑛, 𝑺+
𝑛 , 𝑺++

𝑛 , 𝑴𝑚×𝑛 (uppercase, bold, dimensionality)

Functions:        𝑓 𝑥 , 𝑔𝑗 𝑥 , ℎ𝑖 (𝑥) (lowercase, italic)



Basics of linear algebra - Vector

• Definition: a vector 𝒗 (or Ԧ𝑣) in ℝ𝑛 is a geometric object 

that has magnitude (or length) and direction. It is usually 

denoted by 𝒗 (or Ԧ𝑣) = 𝑣1, 𝑣2, . . , 𝑣𝑛
𝑇 in its column form.

- Given two points h, t ∈ ℝ𝑛, then 𝒗 = h – t ∈ ℝ𝑛 is a vector

pointing from t (tail) to h (head).

- The length of vector 𝒗 ∈ ℝ𝑛 is given by 

||𝒗|| = 𝑣1
2 + 𝑣2

2+. . +𝑣𝑛
2.

- The vector 
𝒗

| 𝒗 |
is a unit vector (a vector with length = 1).



Basics of linear algebra - Vector

- (multiplication by a scalar) Given a scalar 𝛼 ∈ ℝ and 

vector 𝒗 ∈ ℝ𝑛, then

𝛼𝒗 = 𝛼𝑣1, 𝛼𝑣2, . . , 𝛼𝑣𝑛
𝑇.

- (vector addition) Given two vectors 𝒖, 𝒗 ∈ ℝ𝑛, then 

𝒖 + 𝒗 = 𝑢1 + 𝑣1, 𝑢2 + 𝑣2, . . , 𝑢𝑛 + 𝑣𝑛
𝑇.

- (inner product) Given two vectors u, v ∈ ℝ𝑛, then 

<𝒖, 𝒗> = 𝒖 ⋅ 𝒗 = 𝒖𝑇𝒗 = σ𝑖=1
𝑛 𝑢𝑖𝑣𝑖.

- (orthogonality) Two vectors 𝒖, 𝒗 ∈ ℝ𝑛 are called 

orthogonal, if <𝒖, 𝒗> = 0. We denote 𝒖 ⊥ 𝒗.



Questions

- What’s the role of vectors in machine learning?

- How are two given vectors 𝒖, 𝒗 ∈ ℝ𝑛 related? Any 

implications?

- How to find a vector 𝒘 orthogonal to a given vector 𝒖 ∈
ℝ𝑛 ?

- Can you find a third vector 𝒔 that is orthogonal to both 

of 𝒖 and 𝒘 ? 



*** Questions

- Hint: (geometric meaning of inner product)

<𝒖, 𝒗> = ||𝒖|| ||𝒗|| cos 𝜃

hence 
<𝒖,𝒗>

| 𝒖 |

𝒖

| 𝒖 |
is the projection of 𝒗 on 𝒖

(the portion of 𝒗 related to 𝒖 !)

and 𝒘 ≜ 𝒗 -
<𝒖,𝒗>

| 𝒖 |

𝒖

| 𝒖 |
is orthogonal to 𝒖.

(the portion of 𝒗 independent of 𝒖 !)

- When 𝒖 and 𝒗 are unit vectors, <𝒖, 𝒗> represents the

amount of correlated information of 𝒖 and 𝒗.

- Now, 𝒔 = ?



Basics of linear algebra - Vector

• (norm) A vector norm || ⋅ || is a function from ℝ𝑛 to ℝ such 

that (i) | 𝒗 | ≥ 0 for any 𝒗 ∈ ℝ𝑛, and | 𝒗 | = 0 if and only if  

𝒗 = 0; (ii) ||𝒖 + 𝒗|| ≤ ||𝒖|| +||𝒗|| for any 𝒖, 𝒗 ∈ ℝ𝑛;

(iii) ||𝛼𝒗|| = 𝛼||𝒗|| for any 𝛼 ∈ ℝ and 𝒗 ∈ ℝ𝑛.

• (commonly used norm)



Questions
• How are these commonly used norms related?

Example:  𝒗𝑇 = (1 0 2 0)

1. Magnitude/size

2. What’s the graph of the set {𝒙 ∈ ℝ𝑛 | ||𝒙|| ≤ 1}? Any

implications?



*** Questions
• How are these commonly used norms related?

Example:  𝒗𝑇 = (1 0 2 0)

1. Magnitude/size

2. What’s the graph of the set {𝒙 ∈ ℝ𝑛 | ||𝒙|| ≤ 1}? Any

implications?



Basics of linear algebra - Vector

• Definition: A set 𝑉 of 𝑝 vectors {𝒗1, 𝒗2, . . , 𝒗𝑝} in ℝ𝑛 are 

called linearly independent,

if 𝛼1𝒗1 + 𝛼2𝒗2 +⋯+ 𝛼𝑝𝒗𝑝 = 0 implies that

𝛼1 = 𝛼2 = ⋯ = 𝛼𝑝 = 0.

Otherwise, they are linearly dependent.

(span) The set of all vectors generated by a linear 

combination of the vectors in 𝑉 is called the span of 𝑉.

We have

𝑠𝑝𝑎𝑛 𝑉 = {𝛼1𝒗1 + 𝛼2𝒗2 +⋯+ 𝛼𝑝𝒗𝑝| 𝛼1, . . , 𝛼𝑝 ∈ ℝ},

dim 𝑠𝑝𝑎𝑛 𝑉 = # of linearly independent vectors in 𝑉.



Basics of linear algebra - Matrix

• Definition: a (real) matrix A ∈ 𝑴𝑚x𝑛(ℝ) in is a rectangular 

array of entries (𝑎𝑖𝑗 ∈ ℝ) 𝑖 = 1, . . , 𝑚; 𝑗 = 1, . . , 𝑛 in 𝑚

rows and 𝑛 columns.

• Given 

𝒂𝑖 ∈ ℝ𝑛, 𝑖 = 1, . . , 𝑚, are row vectors of matrix A

𝐴𝑗 ∈ ℝ𝑚, 𝑗 = 1, . . , 𝑛, are column vectors of matrix A

• When 𝑚 = 𝑛, A is a square matrix in 𝑴𝑛×𝑛 ℝ ≜ 𝑴𝑛 ℝ .



Basics of linear algebra – Square matrix

- (diagonal & triangular matrix) Given a square matrix 𝐴 =
(𝑎𝑖𝑗) ∈ 𝑴𝑛(ℝ), {𝑎𝑖𝑖}, 𝑖 = 1, . . , 𝑛, are called the main 

diagonal entries. 

(i) If all entries of A below the main diagonal are zero,

A is an upper triangular matrix; 

(ii) If all entries of A above the main diagonal are zero; 

A is a lower triangular matrix; 

(iii) If all entries off the main diagonal are zero,

A is a diagonal matrix.

- (identity matrix) The identity matrix 𝐼𝑛 is an 𝑛 × 𝑛 diagonal 

matrix with all main diagonal entries being 1.

- “rectangular diagonal” is an extended idea for non-square

matrices.



Questions

• What’s the role of matrices in machine leaning?

Example 1 - record of objects in terms of 

features/characteristics specifying the objects

Example 2 – dynamics of a linear system

Example 3 – Image data



*** Questions
• What’s the role of a matrix in machine learning?

Example 1 – record of objects in terms of features/characteristics 

specifying the objects

Iris flower data set

Iris setosa Iris versicolor Iris versginica

features class

sepal length sepal width petal length petal width Setosa / versicolor / versginica

A = 

observation 1 5.1 3.5 1.4 0.2 Iris-setosa

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

observation 92 6.1 3.0 4.6 1.4 Iris-versicolor

⋮ ⋮ ⋮ ⋮ ⋮ ⋮

observation 150 5.9 3.0 5.1 1.8 Iris-virginica



*** Questions
• What’s the role of a matrix in machine learning?

Example 2 – dynamics of a linear system

Constant acceleration moving body1. The governing equation for a moving body with

constant acceleration is Newton's second law:

𝑚 ሷ𝑝 = 𝐹

where 𝑝 is the body position displacement,

𝑚 is the body mass,

𝐹 is the external force applied to the body.

Define the state variables 𝑥1 and 𝑥2, and let ቊ
ሶ𝑥1 = 𝑥2
ሶ𝑥2 = ሷ𝑝

, we have 

ሶ𝑥1
ሶ𝑥2
=

0 1
0 0

𝑥1
𝑥2

+
0

1/𝑚
𝐹

1. https://www.kalmanfilter.net/modeling.html



*** Questions
• What’s the role of a matrix in machine learning?

Example 3 – Image data



Basics of linear algebra - Matrix

- (transposition) Given a matrix 𝐴 = (𝑎𝑖𝑗) ∈ 𝑴𝑚x𝑛(ℝ), then

𝐴𝑇 = 𝑎𝑗𝑖 ∈ 𝑴𝑛x𝑚(ℝ)

- (multiplication by a scalar) Given a scalar 𝛼 ∈ ℝ and matrix 

A ∈ 𝑴𝑚x𝑛(ℝ), then

𝛼𝐴 = (𝛼𝑎𝑖𝑗) ∈ 𝑴𝑚x𝑛(ℝ).

- (matrix addition) Given two matrices A, B ∈ 𝑴𝑚x𝑛(ℝ), then 

A + B = (𝑎𝑖𝑗 + 𝑏𝑖𝑗) ∈ 𝑴𝑚x𝑛 (ℝ).

- (matrix multiplication) Given two matrices A ∈ 𝑴𝑚x𝑛(ℝ)

and B ∈ 𝑴𝑛x𝑝(ℝ), then 

AB = (𝑐𝑖𝑗) ∈ 𝑴𝑚x𝑝 (ℝ)with 𝑐𝑖𝑗 = σ𝑘=1
𝑛 𝑎𝑖𝑘 𝑏𝑘𝑗

** If 𝐴 = 𝐴𝑚x1 (a column vector 𝒂) and 𝐵 = 𝐵1x𝑛 (a row 

vector 𝒃𝑇), then 𝐴𝐵 = 𝒂𝒃𝑇 is an 𝑚 × 𝑛 matrix.



Basics of linear algebra – Square matrix
- Given a square matrix 𝐴 = (𝑎𝑖𝑗) ∈ 𝑴𝑛(ℝ), 

(symmetric) If 𝐴 = 𝐴𝑇 , i.e., 𝑎ij = 𝑎𝑗𝑖, ∀ 𝑖, 𝑗 = 1, . . , 𝑛,

then A is a symmetric matrix. 

(skew symmetric) If A = −AT, then A is a skew

symmetric matrix.

(inverse matrix) If there exists a matrix B ∈ 𝑴𝑛(ℝ),

such that AB = BA = 𝐼𝑛, then matrix is invertible   

(or nonsingular), and we denote its inverse matrix 

𝐴−1 = 𝐵 (and 𝐵−1 = 𝐴, equivalently).



Basics of linear algebra – Square matrix
- Let 𝐴 = (𝑎𝑖𝑗) ∈ 𝑴𝑛(ℝ) be a square matrix.

(determinant) The determinant of 𝐴 (symmetric or not) is

a real number using the Leibniz formula or Laplace 

expansion to indicate if 𝐴 is invertible and the volume of 

the parallelotope P(𝐴) formed by the column vectors of 

matrix 𝐴.

(invertible) Matrix 𝐴−1 exists if and only if det 𝐴 ≠ 0.

(volume)   𝑣𝑜𝑙 𝑃 𝐴 = |det(𝐴)|

(degeneracy) If  det 𝐴 = 0, then 𝑃 𝐴 is degenerated

and column vectors {𝐴1, 𝐴2, . . , 𝐴𝑛} are linearly dependent.

Otherwise, P(A) is solid and {𝐴𝑖} are linearly indpendent.



Basics of linear algebra – Square matrix
- Let 𝐴, 𝐵 ∈ 𝑴𝑛(ℝ) be two square matrices.

- Properties of the determinant function:

(i) det 𝐴 = det 𝐴𝑇 ;

(ii) det 𝐼𝑛 = 1;

(iii) det 𝐴𝐵 = det 𝐴 det 𝐵 ;

(iv) det 𝐴−1 =
1

det 𝐴
.

(v) det 𝐴 = product of eigenvalues of matrix A.



Basics of linear algebra – Square matrix
- Let 𝐴 = (𝑎𝑖𝑗) ∈ 𝑴𝑛(ℝ) be a square matrix.

(trace) The trace of A (symmetric or not) is the sum of 

diagonal entries, tr 𝐴 = σ𝑖=1
𝑛 𝑎𝑖𝑖 .

• Properties of trace of square matrices: for A, B ∈ 𝑴𝑛(ℝ):

(i) 𝑡𝑟 𝐴 + 𝐵 = 𝑡𝑟 𝐴 + 𝑡𝑟(𝐵)

(ii) 𝑡𝑟 𝛼𝐴 = 𝛼 𝑡𝑟 𝐴

(iii) 𝑡𝑟 𝐴 = 𝑡𝑟 (𝐴𝑇)

• Properties of trace of matrices: for A, B ∈ 𝑴𝑚×𝑛(ℝ):
𝑡𝑟 𝐴𝑇𝐵 = 𝑡𝑟 𝐴𝐵𝑇

= 𝑡𝑟 𝐵𝑇𝐴 = 𝑡𝑟 𝐵𝐴𝑇 = σ𝑖=1
𝑚 σ𝑗=1

𝑛 𝑎𝑖𝑗𝑏𝑖𝑗



Questions

• What is the geometric meaning of the trace of a matrix?

Hint:

1. the trace of a square matrix 𝐴 ∈ 𝑴𝑛 is the sum of its

eigenvalues.

2. square root of the trace of 𝐴𝑇𝐴 is the Frobenius norm 

of a rectangular matrix 𝐴 ∈ 𝑴𝑚×𝑛.



Basics of linear algebra – Transformation

• (linear transformation) A matrix 𝐴 ∈ 𝑴𝑚×𝑛(ℝ) is a

linear transformation that maps from ℝ𝑛 to ℝ𝑚 such that

A: 𝒙 ∈ ℝ𝑛 → 𝒚 = 𝐴𝒙 ∈ ℝ𝑚.

Properties: 

(i) For 𝛼, 𝛽 ∈ ℝ and 𝒙, 𝒚 ∈ ℝ𝑛,
𝐴 𝛼𝒙 + 𝛽𝒚 = 𝛼𝐴(𝒙) + 𝛽𝐴 𝒚 .

(ii) If det 𝐴 ≠ 0, linear transformation 𝐴 is an isomorphism.

(iii) For a square matrix 𝐴 ∈ 𝑀𝑛, 𝒚 = 𝐴𝒙 usually means

vector 𝒚 is a rotation of 𝒙 followed by a scaling/stretch and

another rotation in ℝ𝑛.



For example, 𝒙 = 1, 2 𝑇

❖ Rotation

e.g., 𝐴 =
cos

𝜋

2
−sin

𝜋

2

sin
𝜋

2
cos

𝜋

2

, 𝒚 =
−2
1

, 

an angle 
𝜋

2
counterclockwise

❖ Reflection

e.g., 𝐴 =
1 0
0 −1

, 𝒚 =
1
−2

, reflection through the x axis

❖ Scaling

e.g., 𝐴 =
2 0
0 2

, 𝒚 =
2
4

, by 2 in all directions.

***Basics of linear algebra – Transformation



Questions: 

• For 𝒙 ∈ ℝ𝑛, 𝐴 ∈ 𝑴𝑚×𝑛(ℝ), B ∈ 𝑴𝑛×𝑝(ℝ), 𝐶 ∈ 𝑴𝑚×𝑝(ℝ)

(i) (matrix-vector product)

What’s the operational meaning of y = 𝐴𝒙 ∈ ℝ𝑚 ?

(ii) (matrix-matrix product)

What’s the operational meaning of C = 𝐴𝐵 ?



Basics of linear algebra – Transformation
• 𝒙 =

𝑥1
⋮
𝑥𝑛

,  𝑚x𝑛 =
𝒂1
𝑇

⋮
𝒂𝑚
𝑇

=   1  ⋯  𝑛 , B𝑛 𝑝 =
𝒃1
𝑇

⋮
𝒃𝑛
𝑇

=   1  ⋯  𝑝 , 

where    𝒂𝑖
𝑇 is 1 × 𝑛, 𝑖 = 1, ,𝑚;   𝒃𝑗

𝑇 is 1 × 𝑝, 𝑗 = 1, , 𝑛; 

 𝑗 is 𝑚 × 1, 𝑗 = 1, , 𝑛;   𝑘 is 𝑛 × 1,  = 1, , 𝑝. 

• 𝐴𝒙 =
𝒂1
𝑇

⋮
𝒂𝑚
𝑇

𝒙 =
𝒂1
𝑇𝒙
⋮

𝒂𝑚
𝑇 𝒙

(algebraic)

𝐴𝒙 =   1  ⋯  𝑛

𝑥1
⋮
𝑥𝑛

= σ 𝑥𝑗 𝑗
𝑛
𝑗=1 (sum of column vectors)

• 𝐴𝐵 =
𝒂1
𝑇

⋮
𝒂𝑚
𝑇

  1  ⋯  𝑝 =

𝒂1
𝑇 1 ⋯ 𝒂1

𝑇 𝑝

⋮  ⋮
𝒂𝑚
𝑇  1 ⋯ 𝒂𝑚

𝑇  𝑝

= 𝒂𝑖
𝑇 𝑘 𝑖=1, ,𝑚

𝑘=1, ,𝑝

 (algebraic)

𝐴𝐵 =
𝒂1
𝑇

⋮
𝒂𝑚
𝑇

𝐵 =
𝒂1
𝑇𝐵
⋮

𝒂𝑚
𝑇 𝐵

(row by row)

𝐴𝐵 = 𝐴   1  ⋯  𝑝 = 𝐴 1  ⋯ 𝐴 𝑝 (column by column)

𝐴𝐵 =   1  ⋯  𝑛

𝒃1
𝑇

⋮
𝒃𝑛
𝑇

= σ  𝑗𝒃𝑗
𝑇𝑛

𝑗=1 (sum of rank-1 matrices)



Covariance matrix 

• Data records in “object-feature” format are stored as a 

matrix 𝐴𝑚 𝑛 (𝑚 objects with 𝑛 features).

• Matrix 𝐴𝐴𝑇 is viewed as the “object” covariance matrix

that describes the correlations of each pair of objects.

• Matrix 𝐴𝑇𝐴 is viewed as the “feature” covariance matrix 

that describes the correlations of any two features.

• Sum of rank-1 matrix operations shows a way to construct 

a covariance matrix.

• Eigenvectors of 𝐴𝐴𝑇 represents 𝑚 eigen-objects.

• Eigenvectors of 𝐴𝑇𝐴 represents 𝑛 eigen-features.



Basics of linear algebra – Matrix norm

• For 𝐴 ∈ 𝑴𝑚×𝑛 ℝ , some commonly used matrix norms:

• (i) Frobenius norm

||𝐴||𝐹 = Σ𝑖=1
𝑚 Σ𝑗=1

𝑛 𝑎𝑖𝑗
2 = 𝑡𝑟(𝐴𝑇𝐴)

• (ii) matrix 𝑝-norm (𝑝 ≥ 1)

||𝐴||𝑝 = 𝑠𝑢𝑝𝒙≠0
||𝐴𝒙||𝑝

||𝒙||𝑝
= 𝑚𝑎𝑥||𝒙||𝑝=1||𝐴𝒙||𝑝

In particular, 

||𝐴||1 = 𝑚𝑎𝑥𝑗=1,..,𝑛 σ𝑖=1
𝑚 |𝑎𝑖𝑗| = maximum absolute 

column sum of 𝐴;

||𝐴||∞ = 𝑚𝑎𝑥𝑖=1,..,𝑚 σ𝑗=1,..,𝑛 |𝑎𝑖𝑗| = maximum absolute

row sum of 𝐴.



Basics of linear algebra – Eigenvalue and eigenvector

• Definion: For a square matrix 𝐴 ∈ 𝑴𝑛 ℝ , an eigenvector 

𝒖 ∈ 𝑅𝑛 is a directional vector such that 𝐴𝒖 = 𝜆𝒖 for some 

𝜆 ∈ ℝ. The corresponding 𝜆 is an eigenvalue.

• (geometric meaning) an eigenvector, corresponding to 

a nonzero eigenvalue, points in a direction in which it 

is stretched by the transformation 𝐴 and the eigenvalue is 

the factor by which it is stretched. If the eigenvalue is 

negative, the direction is reversed.

• (characteristic equation) 

det(𝐴 − 𝜆𝐼𝑛) = 0.

matrix 𝐴 has a non-zero eigenvector if and only if the

determinant of matrix 𝐴 − 𝜆𝐼𝑛 is zero.



Basics of linear algebra – Eigenvalue and eigenvector

• det(𝐴 − 𝜆𝐼𝑛) is the characteristic polynomial that has 

𝑛 roots { 𝜆1, . . , 𝜆𝑛} (some may repeat) as eigenvalues.

• (real eigenvalue) All eigenvalues of a symmetric matrix 

𝐴 ∈ 𝑺𝑛 (≜ set of all symmetric 𝑛 × 𝑛 matrices) are real.

Properties: For a square matrix 𝐴 ∈ 𝑴𝑛(ℝ) with 

eigenvalues {𝜆𝑖},

(a) The eigenvalues of 𝐴𝑘 are {𝜆𝑖
𝑘}.

(b) If 𝐴−1 exists, then the eigenvalues of 𝐴−1 are {𝜆𝑖
−1}.

(c) 𝑡𝑟 𝐴 = Σ𝑖𝜆𝑖 = 𝜆1 + 𝜆2 + ⋅⋅⋅ +𝜆𝑛.

(d) det 𝐴 = Π𝑖 𝜆𝑖 = 𝜆1𝜆2 ⋅⋅⋅ 𝜆𝑛.



Basics of linear algebra- Definite matrix

• (definiteness): A symmetric matrix 𝑀 ∈ 𝑴𝑛 ℝ is

(i) positive semidefinite (𝑝𝑠𝑑) if 𝒙𝑇𝑀𝒙 ≥ 0, ∀ 𝒙 ∈ ℝ𝑛;

(ii) positive definite (𝑝𝑑) if 𝒙𝑇𝑀𝒙 > 0, ∀ 𝒙 ∈ ℝ𝑛\ {𝟎};

(iii) negative semidefinite (𝑛𝑠𝑑) if 𝒙𝑇𝑀𝒙 ≤ 0, ∀ 𝒙 ∈ ℝ𝑛;

(iv) negative definite (𝑛𝑑) if 𝒙𝑇𝑀𝒙 < 0, ∀ 𝒙 ∈ ℝ𝑛\ {𝟎}.

Otherwise 𝑀 is an indefinite matrix.

• Properties:

• (i) 𝑀 is 𝑝𝑠𝑑 iff all eigenvalues of 𝑀 are non-negative.

• (ii) 𝑀 is 𝑝𝑑 iff all eigenvalues of 𝑀 are positive.

• (iii) 𝑀 is 𝑛𝑠𝑑 iff all eigenvalues of 𝑀 are non-positive.

• (iv) 𝑀 is 𝑛𝑑 iff all eigenvalues of 𝑀 are negative.



Basics of linear algebra- Definite matrix

Properties:

(v) square root matrix 𝑀 is 𝑝𝑠𝑑 iff 𝑀 = 𝐵𝑇𝐵 for some 

𝐵 ∈ 𝑴𝑛(ℝ). Moreover, 𝐵 is invertible when 𝑀 is 𝑝𝑑.

We may  write 𝐵 = 𝑀
1

2 = 𝑀.

(vi) For  𝐴 ∈ 𝑴𝑚×𝑛(ℝ), 𝐴
𝑇𝐴 ∈ 𝑴𝑛 ℝ and 𝐴𝐴𝑇 ∈ 𝑴𝑚 (ℝ)

are 𝑝𝑠𝑑. Moreover, 𝐴𝑇𝐴 and 𝐴𝐴𝑇are 𝑝𝑑, if 𝐴 has full 

rank.



Questions

• How to find the eigenvalues and eigenvectors of a matrix

𝐴 ∈ 𝑴𝑛 ℝ effiently?



Basics of linear algebra - Subspace
• For a given matrix 𝐴 = (𝑎𝑖𝑗) ∈ 𝑴𝑚x𝑛(ℝ),we have

(Column space of 𝐴) 

𝐶 𝐴 = {𝒖 ∈ 𝑅𝑚 | 𝒖 = 𝐴𝒙 for some 𝒙 ∈ ℝ𝑛} ⊂ ℝ𝑚

(Row space of 𝐴)

𝑅 𝐴 = 𝐶 𝐴𝑇 = {𝒗 ∈ 𝑅𝑛 | 𝒗 = 𝐴𝑇𝒚 for some 𝒚 ∈ ℝ𝑚} ⊂ ℝ𝑛

(Null space of 𝐴)

𝑁 𝐴 = {𝒘 ∈ 𝑅𝑛 | 𝐴𝒘 = 0} ⊂ ℝ𝑛

(Null space of 𝐴𝑇)

𝑁 𝐴𝑇 = {𝒔 ∈ 𝑅𝑚 | 𝐴𝑇𝒔 = 0} ⊂ ℝ𝑚



Basics of linear algebra - Subspaces

• For a given matrix 𝐴 = (𝑎𝑖𝑗) ∈ 𝑴𝑚x𝑛(ℝ),

• (Orthogonality) 𝑅 𝐴 ⊥ 𝑁  and 𝐶 𝐴 ⊥ 𝑁(𝐴𝑇)

• (Dimensionality) dim(𝑅(𝐴)) = dim(𝐶 𝐴 )

• (Rank) 𝑟𝑎𝑛 𝐴 ≜ dim 𝑅 𝐴 = dim(𝐶 𝐴 ) ≤ 𝑚𝑖𝑛{𝑚, 𝑛}

• (Complementarity) Assume 𝑟𝑎𝑛 𝐴 = 𝑟, then 

dim 𝑁 𝐴 = 𝑛 − 𝑟 and dim(𝑁 𝐴𝑇 ) = 𝑚 − 𝑟.



Questions:

• How to calculate 𝑟𝑎𝑛 (𝐴)?

• What’s the geometric meaning of 𝑟𝑎𝑛 (𝐴)?

• Any implications (complexity of image)? 

• What’s about “𝑟𝑎𝑛 -one” matrix and “𝑟𝑎𝑛 -k” matrix?



Finland United Kingdom United States Japan

*** Questions:

Rank = 9 Rank = 60Rank = 37 Rank = 85

Convert the truecolor images RGB to the grayscale images and store them into 
100 × 200 matrices. Compare the rank:



Basics of linear algebra – Matrix decomposition

• (orthonormality) A set of 𝑚 𝑛-vectors form an orthonormal 

list if all vectors in the set are mutually orthogonal and 

all of unit length.

1. All vectors in an orthonormal list are linearly independent.

2. (Gram-Schmidt theorem) For a set of linearly independent vectors,

there exists an orthonormal list of the same number of vectors 

sharing the same span.

3. Orthonormal basis is an orthonormal list of basis vectors of a space.

• For an 𝑚 × 𝑛 matrix A, the following statements are equivalent: 

𝑎 𝐴𝑇𝐴 = 𝐼𝑛; (b) ||𝐴𝒙|| = | 𝒙 | ∀ 𝒙 ∈ ℝ𝑛;

(c) <𝐴𝒙, 𝐴𝒚> = <𝒙, 𝒚 > ∀ 𝒙, 𝒚 ∈ ℝ𝑛;

(d) The column vectors of A are orthonormal.



Basics of linear algebra – Matrix decomposition

(orthogonal matrix) a square matrix 𝑄 is an orthogonal 

matrix if 𝑄𝑇 = 𝑄−1.

1. The transpose of an orthogonal matrix is orthogonal.

2. The inverse of an orthogonal matrix is orthogonal.

3. A product of orthogonal matrices is orthogonal.

4. det 𝑄 = 1 𝑜𝑟 − 1 for an orthogonal matrix 𝑄.

• For a square matrix A, the following statements are equivalent:

(a) A is orthogonal; (b) ||𝐴𝒙|| =||𝒙||, ∀ 𝒙 ∈ ℝ𝑛;

(c) <𝐴𝒙, 𝐴𝒚> = <𝒙, 𝒚 >, ∀ 𝒙, 𝒚 ∈ ℝ𝑛;

(d) The column vectors of A are orthonormal;

(e) The row vectors of A are orthonormal.



Basics of linear algebra - QR decomposition

• (Square matrix) Any square matrix 𝐴 ∈ 𝑴𝑛 ℝ may be 

decomposed as 𝐴 = 𝑄𝑅, where 𝑄 is 𝑛 × 𝑛 orthogonal and 

𝑅 is 𝑛 × 𝑛 upper triangular. If 𝐴 is invertible, then the 

factorization is unique if we require all diagonal entries of 

𝑅 to be positive.

• (Rectangular matrix) If 𝐴 ∈ 𝑴𝑚×𝑛(ℝ), then 𝐴 = 𝑄𝑅, where 

𝑄 is an 𝑚 × 𝑛 matrix with column vectors forming an 

orthonormal list and 𝑅 is an 𝑛 × 𝑛 upper-triangular matrix. 

If 𝐴 is of full rank and we require the diagonal entries of 𝑅
to be positive, then the factorization is unique and 𝑅 is the 

same as that in the Cholesky factorization of 𝐴𝑇 .



Questions

• How to perform 𝑄𝑅 decomposition?

• What’s the use of 𝑄𝑅 factorization?



Basics of linear algebra – Eigen-decomposition

• Given a square matrix 𝐴 ∈ 𝑴𝑛(ℝ) with 𝑛 linearly 

independent eigenvectors {𝒒𝑖} corresponding to 

eigenvalues {𝜆𝑖}, 𝑖 = 1, . . , 𝑛, it can be factorized as 

𝐴 = 𝑄Λ𝑄−1,

where Q ∈ 𝑴𝑛 ℝ with 𝒒𝑖 being the 𝑖
𝑡ℎ column, 

Λ ∈ 𝑴𝑛 ℝ is diagonal with Λ𝑖𝑖 = 𝜆𝑖. The eigenvectors 𝒒𝑖
are usually normalized, but they need not be.

• If 𝐴 ∈ 𝑺𝑛(ℝ) is a symmetric square real matrix, then all

{𝜆𝑖} are real and {𝒒𝑖} can be chosen orthonormal. In this

case, 𝐴 = 𝑄Λ𝑄𝑇 where 𝑄 is an orthogonal matrix.



Questions

• How to perform eigen-decomposition?

• What’s the use of eigen-decomposition?



Basics of linear algebra – Singular value & SVD

• Given a matrix 𝐴 ∈ 𝑴𝑚×𝑛(ℝ), the singular value 

decomposition (SVD) of matrix 𝐴 is a factorization of the 

form 𝐴 = 𝑈Σ𝑉𝑇, where 𝑈 ∈ 𝑴𝑚(ℝ) is orthogonal, 

Σ ∈ 𝑀𝑚×𝑛 is a “rectangular diagonal” matrix with 

nonnegative real numbers {𝜎𝑖} (called singular values)

on the diagonal, and 𝑉 ∈ 𝑴𝑛 ℝ is orthogonal. 

• Since 𝐴𝐴𝑇 ∈ 𝑺𝑚 ℝ and 𝐴𝑇𝐴 ∈ 𝑺𝑛 ℝ , we use (normalized) 

eigenvectors {𝒖𝑖} of 𝐴𝐴𝑇 as the columns of 𝑈 and  

(normalized) eigenvectors {𝒗𝑖} of 𝐴𝑇𝐴 as columns of 𝑉.



Basics of linear algebra – Singular value & SVD
• When 𝑚 = 𝑛 and 𝐴 is symmetric, we know 𝑈 = 𝑉 and 

 2 = 𝐴𝐴𝑇 = 𝑈Σ𝑉𝑇 𝑉Σ𝑈𝑇 = UΣ2𝑈𝑇

Eigen-decomposition says 𝐴2 = QΛ𝑄𝑇 . Knowing that

𝑄 = 𝑈 in this case, we have Σ2 = Λ.Hence 𝜎𝑖
2 = 𝜆𝑖 ,

where {𝜆𝑖} are non-negative eigenvalues of matrix 𝐴T𝐴.



Basics of linear algebra – SVD forms

• (From https://en.wikipedia.org/wiki/Singular_value_decomposition)

• Various compact forms of SVD:

https://en.wikipedia.org/wiki/Singular_value_decomposition


Basics of linear algebra – Geometric meaning of SVD

• (From https://en.wikipedia.org/wiki/Singular_value_decomposition) 

• Meaning of SVD

https://en.wikipedia.org/wiki/Singular_value_decomposition


Questions

1.  How to compute SVD?

2.  What’s the use of SVD? 

- Low rank matrix approximation

- New meaning of matrix norms

- Principal component analysis



Basics of linear algebra – Low-rank approximation

(Eckart-Young-Mirsky Theorem)

• Given a matrix 𝐴 ∈ 𝑴𝑚×𝑛(ℝ), assuming 𝑚 ≥ 𝑛 , SVD leads 

to 𝐴 = 𝑈Σ𝑉𝑇, where 𝑈 ∈ 𝑴𝑚 ℝ ,𝑉 ∈ 𝑴𝑛 ℝ are 
orthogonal, Σ ∈ 𝑀𝑚×𝑛(ℝ) is rectangular diagonal with

𝜎1 ≥ 𝜎2 ≥ ⋅⋅⋅ 𝜎𝑛 ≥ 0 (= 𝜎𝑛+1).

Define a matrix

𝐴𝑘= σ𝑖=1
𝑘 𝜎𝑖𝒖𝑖𝒗𝑖

𝑇 , for  = 1,…,𝑛.

Then 𝐴𝑘 is the closest “𝑟𝑎𝑛 -k” approximation of matrix 𝐴

in terms of the || ⋅ ||2 norm. In fact,

||𝐴 − 𝐴𝑘||2 = 𝜎𝑘+1, for  = 1, , 𝑛.



Basics of linear algebra – Matrix norm

Matrix norm in terms of singular values:

• Let matrix 𝐴 ∈ 𝑴𝑚×𝑛 ℝ .  ssuming 𝑟𝑎𝑛 𝐴 = 𝑟 ≤
min 𝑚, 𝑛 with singular values 𝜎1 ≥ 𝜎2 ≥ ⋅⋅⋅≥ 𝜎𝑟 ≥ 0.

Recall that some commonly used matrix norms:

(i) Frobenius norm

||𝐴||𝐹 = Σ𝑖=1
𝑚 Σ𝑗=1

𝑛 𝑎𝑖𝑗
2 = 𝑡𝑟(𝐴𝑇𝐴)

(ii) matrix 𝑝-norm (𝑝 ≥ 1)

||𝐴||𝑝 = 𝑠𝑢𝑝𝒙≠0
||𝐴𝒙||𝑝

||𝒙||𝑝
= 𝑚𝑎𝑥||𝒙||𝑝=1||𝐴𝒙||𝑝



Basics of linear algebra – Matrix norm
Now we have

• (i) Frobenius norm

||𝐴||𝐹 = Σ𝑖=1
𝑚 Σ𝑗=1

𝑛 𝑎𝑖𝑗
2 = 𝑡𝑟(𝐴𝑇𝐴) = σ𝑖=1

𝑟 𝜎𝑖
2

• (ii) matrix 𝑝-norm (𝑝 ≥ 1)

||𝐴||𝑝 = 𝑚𝑎𝑥𝒙≠0
||𝐴𝒙||𝑝

||𝒙||𝑝
= 𝑚𝑎𝑥||𝒙||𝑝=1||𝐴𝒙||𝑝

In particular, 

||𝐴||2 = 𝑚𝑎𝑥𝒙≠0
||𝐴𝒙||2

||𝒙||2
= 𝜎1 (similarly 𝑚𝑖𝑛𝒙≠0

||𝐴𝒙||2

||𝒙||2
= 𝜎𝑟)

(iii) Nuclear norm

||𝐴||∗ = σ𝑖=1
𝑟 𝜎𝑖



Basics of linear algebra - PCA
(https://en.wikipedia.org/wiki/Principal_component_analysis#:~:text=Principal%20compon

ent%20analysis%20(PCA)%20is,components%20and%20ignoring%20the%20rest.)

Principal component analysis (PCA) is the process of 

computing the principal components and using them to 

perform a change of basis on the data, sometimes using 

only the first few principal components and ignoring the 

rest. The 1st principal component intends to explain

the most variance. 

The 2nd principal component 

explains the most variance in 

what is left once the effect of 

the first component is removed,

https://en.wikipedia.org/wiki/Principal_component_analysis#:~:text=Principal%20component%20analysis%20(PCA)%20is,components%20and%20ignoring%20the%20rest.)
https://en.wikipedia.org/wiki/Principal_component_analysis#:~:text=Principal%20component%20analysis%20(PCA)%20is,components%20and%20ignoring%20the%20rest.)


Basics of linear algebra - PCA
• (basic ideas) 

𝐴 = data matrix (shift sample mean of each column to 0)

𝐴𝑇𝐴 = (recognized as/proportional to) covariance matrix 

𝐴 = 𝑈Σ𝑉𝑇 by SVD

𝐴𝑇𝐴 = VΣT𝑈𝑇UΣT𝑉𝑇 = 𝑉Σ𝑇Σ𝑉𝑇 = 𝑉Σ2𝑉𝑇

𝑇 = score matrix = 𝐴𝑉 = 𝑈Σ𝑉𝑇𝑉 = 𝑈Σ

Hence each column of 𝑇 is given by one of the left singular

vectors of 𝐴 multiplied by the corresponding singular value.

This form is also the polar decomposition of 𝑇.

* 𝐴 projected to V represented by U and Σ

(𝑝𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠).



Questions

• 1. How to conduct PCA for practical application?

• 2. Properties and limitations of PCA?



*** Questions

• How to conduct PCA?

Data matrix 𝐴 =
𝒙1
𝑇

⋮
𝒙𝑚
𝑇

=

𝑥11 ⋯ 𝑥1𝑛
⋮  ⋮

𝑥𝑚1 ⋯ 𝑥𝑚𝑛

.

1. Centralization, 𝝁 =
1

𝑚
σ𝑖=1
𝑚 𝒙𝑖 , ҧ𝐴 =

𝒙1
𝑇 − 𝝁𝑇

⋮
𝒙𝑚
𝑇 − 𝝁𝑇

.

2. Computing eigenvalues and eigenvectors

Method 1: Eigen decomposition on the covariance matrix ҧ𝐴𝑇 ҧ𝐴.

Method 2: SVD on ҧ𝐴.

𝑉 ∈ ℝ𝑛×𝑛, Σ𝑛 𝑛 = 𝑑𝑖𝑎𝑔(𝜎1,  , 𝜎𝑛)

3. Select the number of principal components (e.g., Fraction-of-variance-explained, 

FVE)

𝐹𝑉𝐸𝑘 =
σ𝑖=1
𝑘 𝜎𝑖

2

σ𝑖=1
𝑛 𝜎𝑖

2 =
σ𝑖=1
𝑘 𝜎𝑖

2

ҧ𝐴 𝐹
2 > 𝐹𝑉𝐸𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

4. Compute the PC-scores

𝑉(𝑘) ∈ ℝ𝑛×𝑘, first  eigenvectors, and 𝑆 = ҧ𝐴𝑉(𝑘)



Prof. Gilbert Strang’s comment
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1. Gilbert Strang, Introduction to Linear Algebra, 5th Edition, 2016, 

Wellesley-Cambridge Press, ISBN-13: 978-0980232776

2. Gilbert Strang, Linear Algebra and Learning from Data, First  Edition, 

2019, Wellesley Cambridge Press, ISBN-13: 978-0692196380

3. A. Messac, Optimization in Practice with Matlab, Cambridge Univ. 

Press, ISBN: 9781107109186, 2015.



Software platform for linear algebra

• MATLAB functions: 

- 𝑟𝑎𝑛 (𝐴), det(𝐴), 𝑡𝑟(𝐴), 𝑛𝑜𝑟𝑚(𝒙), 𝑛𝑜𝑟𝑚 𝐴 ,

QR, Eigen-decomposition, SVD, PCA, …

• Python functions:

- Libraries: 𝑝𝑎𝑛𝑑𝑎𝑠, 𝑛𝑢𝑚𝑝𝑦, 𝑛𝑢𝑚𝑝𝑦. 𝑙𝑖𝑛𝑎𝑙𝑔,  …



Software platform for linear algebra
• MATLAB

❖ Generate a random matrix 𝐴.

❖How to calculate rank(𝐴)?

➢ Gaussian elimination
LU factorization: 𝑃𝐴 = 𝐿𝑈, an upper triangular matrix 𝑈, a lower triangular matrix 𝐿, and a permutation 

matrix 𝑃. 

These matrices describe the steps needed to perform Gaussian elimination on the matrix until it is in 

reduced row echelon form. The L matrix contains all of the multipliers, and the permutation matrix P 

accounts for row interchanges.



Software platform for linear algebra

• MATLAB

❖How to calculate rank(𝐴)?

➢ QR factorization 

𝐴 = 𝑄𝑅, an orthogonal matrix 𝑄 and an upper triangular matrix 𝑅.

rank(𝐴) = σ𝑖 𝕀(𝑟𝑖𝑖 ≠ 0)



Software platform for linear algebra

• MATLAB

❖How to calculate rank(𝐴)?

➢ Eigen decomposition (if 𝐴 is square)

𝐴𝑉 = 𝑉𝐷, diagonal matrix 𝐷 of eigenvalues, and matrix 𝑉 whose columns are 

the corresponding right eigenvectors.

𝐷 =

𝜆1
𝜆2

𝜆3

, 𝐴𝑽𝑖 = 𝜆𝑖𝑽𝑖 , 𝑖 = 1,2,3. 𝑟𝑎𝑛 𝐴 = σ𝑖 𝕀(𝜆𝑖 ≠ 0)



Software platform for linear algebra

• MATLAB

❖How to calculate rank(𝐴)?

➢ MATLAB function: ‘rank’, 
rank uses a method based on the singular value decomposition, or SVD. 

The SVD algorithm is more time consuming than some alternatives, but 

it is also the most reliable.

➢ SVD

𝐴 = 𝑈𝑆𝑉𝑇, a diagonal matrix S of the same dimension as A and with singular 

value as diagonal elements in decreasing order, and unitary matrices U and V.

𝑟𝑎𝑛 𝐴 =

𝑖

𝕀(𝜎𝑖 ≠ 0)



Software platform for linear algebra

• MATLAB

❖ How to calculate det(𝐴)?

➢ MATLAB function: 

‘det’ uses the LU decomposition to calculate the determinant

➢ QR factorization: det 𝐴 = ς𝑖 𝑟𝑖𝑖

➢ Eigen decomposition (if 𝐴 is square) : det 𝐴 = ς𝑖 𝜆𝑖



Software platform for linear algebra

• MATLAB

❖ How to calculate trace(𝐴)?

➢ MATLAB function: 

‘trace’ calculates the sum of the diagonal elements of matrix A.

trace 𝐴 =

𝑖

𝑎𝑖𝑖

➢ Eigen decomposition (if 𝐴 is square) :

trace 𝐴 =

𝑖

𝜆𝑖



Software platform for linear algebra
• MATLAB

❖ How to calculate norm of a vector, i.e., norm 𝒙 , 𝒙 ∈ ℝ𝑛?



Software platform for linear algebra
• MATLAB

❖ How to calculate norm of a matrix, i.e., norm 𝐴 , 𝐴 ∈ ℝ𝑛×𝑛?



Software platform for linear algebra

• MATLAB

❖ How to conduct PCA? An example.

𝐹𝑉𝐸𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.95 
 = 17 
𝐹𝑉𝐸𝑘 = 0.9503 

Centralized image
𝑛 = 293 

𝐹𝑉𝐸𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.85 
 = 7 
𝐹𝑉𝐸𝑘 = 0.8617 



Software platform for linear algebra

• Python:

❖ Compute rank(𝐴) and 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡(𝐴)



Software platform for linear algebra
• Python: 

❖Compute rank(𝐴) and 𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑛𝑡(𝐴)

➢ LU factorization

➢ Eigen decomposition



Software platform for linear algebra

❖ SVD ❖  Matrix norm

• Python: 
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