-
Lecture 4: Network Flows

- In this chapter, we study “classical”" network flow theory,
max-flow min-cut theorem, minimum cost flows,
conditions for the existence of feasible circulations, “out-
of-kilter" method of Minty and Fulkerson.

- Network flow problems are linear programs with the
particularly useful property that they possess optimal
solutions in integers. This permits a number of interesting
and important combinatorial problems to be formulated
and solved as network flow problems.



Maximal Flow Problem

- How big can v be?
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Problem Formulation

o Suppose that each arc (7, 7) of a directed graph G has

assigned to it a nonnegative number ¢;;, the capacity ot
).
o Consider the problem of finding a maximal flow from a

source node s to a sink node t, Let

x;; = the amount of flow through arc (z, 7).

ij
Then
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Problem Formulation

A conservation law 1s observed at each of the nodes
other than s or t. That is, what goes out of node 1,

E -r’l,Ja
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must be equal to what comes in,
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Problem Formulation

So we have

—v, 1=258
Sou-Yeg= { 0, izat (22
J J .

v, : = 1.

o We call any set of numbers x = (z;;) which satisty (2.1)
and (2.2) a feasible flow, or simply a flow, and v is its
value. The problem of finding a maximum value flow
from s to t is a linear program in which the objective is

to maximize v subject to constraints (2.1) and (2.2).



LP Model for Maximal Flow Problem

max v
s. t.
—u, =8,
(flow conservation law) Y . x5 — ) . wi; = 0, 1+£35,1
p i=1
(capacity bound) 0 <2y < ey5

Question: How many variables?

How many constraints?



I
Applications

- Telecommunication capacity planning
- Traffic network directing
- Fleet shipment



I
Feasible Flow — An Example
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Question: Is it maximal?

Why?




Augmenting Path
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Augmented Flow
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Augmented Flow

Question: Is it feasible?

Is 1t maximal?

why?




Optimality Condition

(S,T) : an (s, t)-cutset with capacity
e(S,T)=) ) ej=2+2=4
i€S jeT

= No feasible flow can be greater than 4!!



Definitions

o Let P be a directed path from s to t. An arc (z,7) in P
1s said to be a forward arc if it 1s directed from s toward
t and backward otherwise. P is said to be a flow
augmenting path with respect to a given flow = = (z;;)
if z;; < ¢;; for each forward arc (z,7) and x;; > 0 for

ecach backward arc in P.

o An (s,t)-cutset is identified by a pair (S,T) of
complementary subsets of nodes, with s € S and t € T.
The capacity of the cutset(S,T) is defined as

(B Ty= Y ¥ o

icSjeT



Observations

o The value of any (s,t)-flow cannot exceed the capacity

of any (s,t)-cutset.

o When a maximal flow is found, there exists an (s,t)
cutset such that each arc (i, 7) is saturated, i.e.,
zij = ¢ij, if 1 € 5,5 € T and void, 1.e., 75 =0, if
1el,jels.



Major Results

Theorem 2.1 (Augmenting Path Theorem) A flow is
maximal if and only if it admits no augmenting path from s
to .

Theorem 2.2  (Integral Flow Theorem) If all arc
capacities are integers there is a maximal flow which 1s
integral.

Theorem 2.3 (Maz-Flow Min-Cut Theorem) The
maximum value of an (s, ?)-flow is equal to the minimum

capacity of an (s,t)-cutset.



How to Prove Theorems 2.1 — 2.37?

Lemma 1: The value of any (s, t)-flow

< the capacity of any (s, t)-cutset.

Proof: Sum up (2.2) for all nodes in S
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= Z Z(ﬂfij —xj5) + Z Z(Iij — Tj;)
1€S jeSs ieS jeT

= DD (wij —wji) (23)
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e
A Corollary for Optimality Condition

Corollary 1: If v is an (s,t)-flow and (S,T') is an
(s,t)-cutset with v = ¢(S,T), then v is maximal and ¢(S, T)

1S minimal




Proof of Theorem 2.1

If an augmenting path exists, then (clearly) the flow is not

maximal.

Suppose x = (x;;) is a flow that admits no augmenting
path. We let S = {j| there is an augmenting path from s to
j} and T'= S¢. Then the definitions of augmenting path
and S, T implies that, Vi S and j €T,

Tij = cij and xzj; = 0.

Hence, by (2.3), we have

v = Z Z(cij —0) =¢(S,T)

i€S jeT

It follows from Corollary 1 that » is a maximal flow.



Proof of Theorem 2.2

Let us start with a zero-flow :lt?j =0, Vi, j.

If 2¥ is not maximal, then it admits an augmenting path
(Thm 2.1). Because each capacity is an integer, we have an
integral flow 2! whose value exceeds that of z". If z! is not
maximal, repeat the reasoning. Because the capacity is
finite, we arrive eventually at an integral flow that admits

no augmenting path and hence is maximal.



Proof of Theorem 2.3

- This proof is a little bit complicated. We need to prove that
every network actually admits a maximal flow.

- Where can we find that information?

- If we cannot get the information on the primal side, then it
IS logic to check the dual side.



-
Dual LP Problem

max v
s. t.

(P) Zj:cﬁ—zja:ij+v =@ £=8
20 Tq — D s Ty — 0, s=A 8T

Zj:cji—zjx,;j—v =0, 2
Tij = Cij

xij = 0

min » _ ¢;jw;;
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u; : unrestricted

Question: What is the meaning of (D)7




xample

Example:

max v
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-
Observation 1:

Lemma 2: Any (s,t)-cutset (S,T") produces feasible

solution whose dual objective value = ¢(S,T).

Proof: Let
up =1, if 7€ 85
=0, if 2T
wi; =1, f 1€85,5€T
=0, otherwise.

Everything follows correctly!



Observation 2: Minimum Cut Set Problem

| D

Minimize
2 i,5 CijWij
s.t w; — U; + Wij = (8]
&l = &
U = O

Uu; . Uj s ‘w.,;j

M

{0,1}
Note that (1) when u;, u; € {0,1}
7 |
S Uug — U = 1

ut:O

(2) when w;; = O, since ¢;; > O

0 < u; < 1 can be attained at an optimal solution.



Example

U:=0

ug — Al +wig >0, Al —ug+wy >0
0us —ui +wiz >0, o M3—uz + waz >0



Example

Note that:
c12,c13,c21,c23 > 0; w12, w13, w21, w23 > 0

In an optimal solution,
u2 > 1 is not necessary 0<wu2<1
=

u2 < 0 is not necessary wig = 1l,w21 =0

(1 —uz)c12 + uzeaz + (1 x €13) + (0 X e21)

|V

(1 — uz)min{clz, 023} — uzmin{clg, 023} + c13

min{ci2,c23} + c13

c12 > co3,u2 =1
When: = e The best of 2 cases.

c23 > c12,u2 =0

c12 =c23,u2 =0o0r1



Observation 3:

Lemma 3: There is a dual optimal solution corresponding

to an (s,t)-cutset.

Proof: Since the constraint for node ¢ in (P) is redundant,
we may assume that u; = 0. Then we may assume ugs = 1,
because there is no reason for ug to be greater (we can
alwayse scale it back to 1). Notice that ¢;; > 0 and w;; = 0,
for each arc (7, 7), a dual optimal solution can always be

constructed in the way such that w;; = 1 if and only if

u; = 1 and u; = 0 (Why?). Then let
T = {jlu; = 0}.
The capacity of the cutset (5,7') is exactly equal to the

value of the optimal dual solution.



Proof of Theorem 2.3

By Lemma 3 and Lemma 2, we know the dual problem (D)
in facts finds a minimum capacity (s, t)-cutset. But (P) is
feasible and bounded, the fundamental theorem of LP says

value(P)=value(D), which proves Theorem 2.3.



More Observations

(P) — maximal flow
(D) — minimal capacity cutset
(P)+(D) =7

By complementary slackness theorem:

For optimal solutions:

(cij — xi5)wi; =0

(‘U,j —u; + wij):[.',;j ==
Let u;:= node potential.

e If the potential at ¢ > j (u; > wu;), then w;; > 0, and
hence x;; = c;j;, i.e., the flow in (4, j) is saturated.

o If u; < uj, then u; — u; + w;; > 0, and hence x;; = 0,
i.e., no flow in (7, 7).

e If u; = u;, then there may or may not be positive flow
in. (8, 7).



Maximal Flow Algorithm

- The key is to find a flow augmenting path.

- What kind of flow augmenting path?



Finding a flow augmenting path

Labeling Procedure
Example:

- -
(1.2) 2.1




A labeling scheme for augmenting path

o A label (iT,4;) indicates that there exists an
augmenting path with capacity d; from the source to
the node j in question, and that (i, j) is the last arc in
this path.

o A label (i7.9;) indicates that (j.,7) is the last arc in the
path, i.e., (7,7) will be a backward arc if the path is
extended to the sink .

¢ Initially only the source node s is labeled with the
special label (—, oc). Additional nodes are labeled in
one of two ways:



Labeling Scheme

If node i is labeled and there is an arc (7, j) for which

xij < ¢ij, then the unlabeled node j can be given the
label (i1, d;), where

5j == mm{éz, Cij — IzJ}
If node 7 is labeled and there is an arc (j,7) for which
xji > 0, then the unlabeled node j can be given the

label (i7,4;), where

» 73

: mzn{éz, .Tﬁ}



Labeling Scheme

o If node t is labeled, then an angmenting path has been
found and the flow value can be angmented by d;.
Otherwise, no augmenting path exists.

o A minimum capacity cutset (S,7’) is constructed by
letting S contain all labeled nodes and T' contain all
unlabeled nodes.

o A labeled node is either “scanned” or “unscanned.” A
node is scanned by examining all incident arcs and
applying labels to previously unlabeled adjacent nodes,

according to the rules given above.



Maximal Flow Algorithm

< Step O(Start) Let x = (x;;) be any integral feasible flow,

possibly the zero flow. Give node s the permanent label

(_7 OO)'
< Step 1(Labeling and Scanning)

(1.1) If all labeled nodes have been scanned, go to Step
= 3

(1.2) Find a labeled but unscanned node i and scan it
as follows: For each arc (z,7), if x;; < c;; and 7 is

unlabeled, give j the label (i*,65;), where

6_7' — 'nzin{cij — Lij- 62}.

For each arc (j,%), if x;; > 0 and j is unlabeled, give j
the label (27, 6;), where

(Sj — min{é,-, 1‘_72}
(1.3) If node t has been labeled, go to Step 2; otherwise
go to Step 1.1.



Maximal Flow Algorithm

o Step 2(Augmentation) Starting at node ¢, use the index
labels to construct an augmenting path. (The label on
node t indicates the second-to-last node in the path. the
label on that node indicates the third-to-last node, and
so on.) Augment the flow by increasing and decreasing
the arc flows by d;, as indicated by the superscripts on
the index labels. Erase all labels, except the label on

node s. Go to Step 1.

o Step 3(Construction of Minimal Cut) The existing flow
is maximal. A cutset of minimum capacity is obtained
by placing all labeled nodes in S and all unlabeled

nodes in 7. The computation is completed.

Note: the algorithm is O(mwv) in complexity.



Efficiency of the Maximal Flow Algorithm

Example:

How many augmentations are needed 7

2 or 2 millions?

- Any ideas?
- first labeled, first scan?
- augmenting path has fewest arcs?
- augmenting path allows most increase in flow?



Maximum capacity flow augmenting path

- The problem of finding a maximum capacity flow
augmenting path is evidently quite similar to the problem
of finding a shortest path, or, more precisely, a path in
which the minimum arc length is maximum.



Maximum capacity flow augmenting path

Shortest Path Approach

c;;: capacity of arc (i, j)

(cij = 0, if arc (7, j) does not exist)

C;j = max{c;; — Tij, T}

u; = the capacity of a max-flow augmenting path from
node s to node i.

Bellman’s Equation:

Ug = +00

w; = maxg min{ug, Cg;}, i #F S

Dijkstra-like algorithm: O(n?)



Augmenting path with fewest arcs

Let
(k) . . :
0, " = the minimum number of arcs in an augmenting
path from s to 7 after £ low augmentations.
and
k . . .
Ti( ) = the minimum number of arcs in an augmenting

path from 7 to t after & flow augmentations.



Augmenting path with fewest arcs

o Lemma 4.2 If each flow augmentation is made along
an augmenting path with a minimum number of arcs,
then

5§k+1) 2 (S,Ek)
and
7.i(k-l-l) > Ti(k)

for all 7, k.



Improved Efficiency

o Theorem 4.1(Edmonds and Karp) If each flow
augmentation is made along an augmenting path with a
minimum number of arcs, then a maximal flow is
obtained after no more than mn/2 < (n® —n?)/2
augmentations, where m is the number of arcs in the

network and n is the number of nodes.

- The bound can be further reduced to “mn/4”.

- Complexity = O(m*n).

- J. Edmonds and R. M. Karp, “Theoretical Improvements in Algorithmic
Efficiency for Network Flow Problems," JACM, 19(1972) 248-264.



Any more improvement?

There may be better ways to choose augmenting paths
than by either of the two policies we have mentioned.
In fact, if one is sufficiently clever in the choice of
augmenting paths and in the choice of d for each of
them, no more than m flow angmentations are

necessary to achieve a maximal flow.

- Flow decomposition



Improved Efficiency

o Theorem 4.3 For any flow network (with possibly
nonintegral capacities), there exists a sequence of no
more than m (s, t)-How augmenting paths,
augmentation along which yields a maximal flow.
Moreover, all of these augmenting paths contain only

forward arcs.

- Complexity = O(m”2).
- How to realize such augmenting paths?



Implications of Max-Flow Min-Cut Theorem

- Max-Flow with node capacity constraints

o

- More applicable for real applications



Max-Flow with node capacity constraints

< Let us consider a flow network in which there are arc
capacities ¢;; = 0 and, in addition, node capacities
c; = 0. Flows are required to satisfy not only the
conservation conditions and arc constraints

(0O < ;5 < ¢;5) but also the node constraints,
E Lij <5 Cj, 7 % S,t.
3

That is, the outflow (and hence the inflow) at any

interior nodes does not exceed the capacity of the node.

o For a node having node capacities as well as arc
capacities, we define an (s, t)-cut as a set of arcs and
nodes such that any path from s to ¢ uses at least one
member of the set. The capacity of a cut is the sum of

the capacities of its members.



Generalized Max-Flow Min-Cut Theorem

o Theorem 5.1 (Generalized Maz-Flow Min-Cut
Theorem) In a network having node capacities as well
as arc capacities, the maximum value of an (s, t)-flow is
equal to the minimum capacity of an (s, )-cut.
Moreover, if all capacities are integers, there is a

maximal flow that is integral.



Proof of Theorem 5.1

- Basic idea

- Formal proof — Homework exercise



I
Implications to Graph Theory

A celebrated result of graph theory is a theorem of K.
Menger.

A digraph G is said to be k-connected from s to t if for
any set C' of k-1 nodes missing s and ¢ there is a
directed path from s to ¢t missing C. In other words, it
is not possible to disconnect s from ¢ by removing any
fewer than & nodes.

Two (s,t) paths are said to be independent if they have
no nodes in common except s and t.



Observation

- Lemma:
A directed graph has k independent (s-t) paths,
then it is k-connected from s to t.



Menger’s Theorem

(# of independent (s,t) paths)

e How many independent (s.t) paths?
e k-connected digraph (k=7)

e Conjecture: Digraph G is k-connected from s to £, then
(- admits k& independent (s.t) paths?



Other Implications of Max-Flow Min-Cut
Theorem

o Theorem 5.2 (Menger) If digraph G is k-connected
from s to ¢ and does not contain arc (s,t), then G
admits k& independent directed paths from s to t.




Proof of Menger’s Theorem

e Assign each node a capacity of one and each arc an

infinite capacity.

e Because G does not contain arc (s.f). the minimum cut
capacity is finite.

e From the definition of k-connectivity of G. we know the
minimum cut capacity is at least k.

e From Theorem 5.1, there is an integral flow of value at
least k.

e From the capacity assignment, such flow yields at least
k pairwise independent (s,t) paths.



Other Implications

Network flows theory also vields a good deal of

information about the structure of undirected graphs.

¢ Theorem 5.3 The maximum number of arc-disjoint
(s,t) paths in an undirected graph G is equal to the

minimum number of arcs in an (s, t)-cutset.



Min-Cut Formulation

- Generalized knapsack problem — Provisioning problem

< A more sophisticated view of the knapsack can be
taken. Suppose there are n items to choose from., where
item j costs ¢; > 0 dollars. Also suppose there are m
sets of items. S7..55. .....5,,. that are known to confer
special benefits. If all of the items in set S; are chosen,
then a benefit of b; > 0 dollars is gained. The sets are
arbitrary and need not be related in any particular way.
e.g., a given item may be contained in several different

sets.

< There is no restriction on the number of items that can
be purchased, i.e., there is not limiting knapsack. Our
objective is simply to maximize the net benefit, i.e..
total benefit gained minus total cost of items purchased.



Min-Cut Formulation

e Min-cut formulation

' min Zcijwij
i,]
subject to
) U — Ui + Wy >0 (6.1)
g — Uyt el |
W; >0
| u; unrestricted.

e How to formulate the provisioning problem in min-cut
form?



Min-Cut Formulation

Step 1: A simple model

Define
v; =1, ifitem j is purchased
= (0., otherwise
u; =1, if all items in S; are purchased
=0, otherwise.
max Z =) biui — ). cjv; (6.2)

st. wvj—u; >0, Vi, jsuchthat jeS; (6.3)
u;, ’Uj = {O.. ].}



Min-Cut Formulation

Step 2: Adding new variables

w; — 1 —u; (min-cut)

2j Y5

min Z' =3, baw; + ) ; ¢;z; (6.4)
gl w—wm>l, JES;
u; +w; > 1, i=1,....,m (6.5)
—v;+2;>0,j=1,....,n (6.6)

Ui, Uy Wy, 23 € 10,1}



Min-Cut Formulation

Property 1: If (u.v) is feasible to the original problem. then

(@, v, w0 =1—u,z = v) is feasible to the new problem.

Property 2:
Z1 =37 byw; + 2 6% =22 bi(1 —u;) — 3¢5
- Zz bi — 2

Property 3: If (w.v.w. Z) is optimal to the new problem,
then

v; = 1 —u; (because b; > 0 & (6.5))
Z5 = D (because ¢; > 0 & (6.6))

Hence u, v is feasible to the original problem and

Z' =3".b; — Z. This means (i, v) is optimal to the original
problem.



Min-Cut Formulation

Step 3: Min-Cut formulation

Add new variables up and v,4+1 and w;;
[t = l.cssm; 3 =1, :0)
and let ' be a large number.

min 2z =Y. b;w; + Zj cjzj + Zij Kw;;

st. w—wmtwg>0, Vies;
u; —ug+w; >0, i=1,....m (6.7)
Upnt1 —Y+2; 20, 1=1,...,n
U) — Vnit > 1,

Ui, V5, Wy, 2Zj, W;j € {0,1}



Min-Cut Formulation

Property 4: when K — oc, in an optimal solution, uy = 1,

Un+1 = 0, and w;; = 0.

Property 5: (6.7) 1s a min-cut problem except the
integer-variable restrictions, which can be ignored and

replaced by the non-negativity restrictions.

Property 6: Network for provisioning problem.

Sets Items



