Given the following two-dimensional real-valued functions:

$$
\begin{aligned}
f(\boldsymbol{x}) & =\left(x_{1}^{2}+x_{2}^{2}-1\right)^{2}, \\
g_{1}(\boldsymbol{x}) & =-x_{1}-1, \\
g_{2}(\boldsymbol{x}) & =x_{1}-1 \\
g_{3}(\boldsymbol{x}) & =-x_{2}-1, \\
g_{4}(\boldsymbol{x}) & =x_{2}-1
\end{aligned}
$$

Consider the following problems:

$$
\begin{array}{cl}
\min & f(\boldsymbol{x}) \tag{P1}\\
\text { s.t. } & g_{i}(\boldsymbol{x}) \leq 0, i=1,2,3,4,
\end{array}
$$

and

$$
\begin{array}{cl}
\max & f(\boldsymbol{x}) \tag{P2}\\
\text { s.t. } & g_{i}(\boldsymbol{x}) \leq 0, i=1,2,3,4
\end{array}
$$

Problem 1: $[10 \mathrm{pts}]$ Draw $\operatorname{graf}(f)$ in the three-dimensional space E^{3}.
Problem 2: [5 pts] Draw the feasible domain \mathscr{F} of (P1) and (P2) in the two-dimensional space E^{2}.
Problem 3: [10 pts] Draw the contour map of $f(\boldsymbol{x})=C$ in E^{2} for $C=0,1,4$.
Problem 4: [20 pts] Given two points $\boldsymbol{x}^{1}=\left(\frac{1}{3}, \frac{1}{2}\right)^{\mathrm{T}} \in \mathscr{F}$, and $\boldsymbol{x}^{2}=\left(-\frac{8}{10},-\frac{9}{10}\right)^{\mathrm{T}} \in \mathscr{F}$. For $j=1,2$, draw the vectors of the gradient and negative gradient at \boldsymbol{x}^{j}, i.e., $\nabla f\left(\boldsymbol{x}^{j}\right)$ and $-\nabla f\left(\boldsymbol{x}^{j}\right)$, on the contour map in Problem 3, respectively. Verify that $f\left(\boldsymbol{x}^{j}\right)$ will locally increase along the direction of $\nabla f\left(\boldsymbol{x}^{j}\right)$, and $f\left(\boldsymbol{x}^{j}\right)$ will locally decrease along the direction of $-\nabla f\left(\boldsymbol{x}^{j}\right)$.
Problem 5: [5 pts] Identify all local minimum and maximum solutions using the results of Problems 1-4.

Problem 6: [25 pts] At each local optimal solution obtained from Problem 5, find the corresponding $\boldsymbol{\lambda} \in \mathbb{R}^{4}$ with $\lambda_{i} \geq 0, i=1,2,3,4$ such that $\nabla f(\boldsymbol{x})+\sum_{i=1}^{4} \lambda_{i} \nabla g_{i}(\boldsymbol{x})=$ 0.

Problem 7: [25 pts] At each local optimal solution obtained from Problem 5 and its corresponding $\boldsymbol{\lambda}$ obtained from Problem 6, compute its Hessian matrix $L(\boldsymbol{x})=$ $F(\boldsymbol{x})+\boldsymbol{\lambda}^{\mathrm{T}} G(\boldsymbol{x})=\nabla^{2} f(\boldsymbol{x})+\sum_{i=1}^{4} \lambda_{i} \nabla^{2} g_{i}(\boldsymbol{x})$. Show that $L(\boldsymbol{x})$ is positive semi-definite at all local minimum solutions and negative semi-definite at all local maximum solutions.

