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1. Introduction

Binary classification is an important task of information extraction from data. As
a commonly used effective classification technique in machine learning, the support
vector machine (SVM) has been adopted for texture classification (Kim et al., 2012),
customer churn prediction (Chen et al., 2012) and financial prediction (Cao et al.,
2011).

For binary classification, a training data set of n records {(x1, y1), . . . ,
(xi, yi), . . . , (xn, yn)} is given, where xi = [xi

1, x
i
2, . . . , x

i
m]T ∈ R

m indicates the
position of the ith training point in the m-dimensional space, and the label of
yi = +1 or −1 indicates that point xi belongs to Class 1 or Class 2, respectively.
As an optimization-based binary classification technique, the SVM model was first
proposed by Cortes and Vapnik (1995). The basic concept of the SVM model is to
find the parameter vector (u, d) ∈ R

m × R
1 of a hyperplane

f(x) := uT x + d = 0 (1)

that separates the n training points {x1, . . . ,xi, . . . ,xn} into the two classes as
distinctly as possible.

In real-world binary classification applications, the given training data set is
often contaminated by outliers and noise. It is quite possible that no hyperplane
can really separate all points apart such that each point belongs to the right class.
To address this issue, Vapnik (1998) developed a soft SVM model using a continuous
measure of misclassification error. However, the soft SVM model still does not work
well when the training data set is only separable by a nonlinear surface in the m-
dimensional space. To overcome this difficulty, an indirect approach is to map each
training point xi ∈ R

m into a corresponding point φ(xi) in a higher dimensional
space R

l using a nonlinear kernel function φ(x) : R
m → R

l, where l ≥ m, followed
by using an SVM to separate {φ(xi)} apart in the R

l space. Vapnik (1998) proposed
a soft SVM model with a kernel to seek a hyperplane which separates all mapped
training points into two related classes as distinctly as possible.

However, for a given data set, there is no universal rule to automatically choose
a most suitable kernel for usage. Moreover, the performance of a soft SVM model
with a kernel depends heavily on the selected parameter set embedded in the kernel
function (Schölkopf and Smola, 2002). Appropriate parameters are chosen with
intuition to produce a minimal cross-validated misclassification rate. Unfortunately,
some SVMs with kernels need to compute the inverse of a perturbed kernel matrix
in solving its dual problem when the kernel matrix becomes singular (Cristianini
and Shawe-Taylor, 2000), or to decompose the kernel matrix for usage in the primal
problem. These two techniques usually require extra computational effort to produce
an approximated solution.

The objective of this paper is to develop a kernel-free nonlinear SVM model fol-
lowing the logic of soft SVM models. To the best of our knowledge, from optimiza-
tion point of view, Dagher (2008) proposed a kernel-free quadratic SVM (QSVM)
model and tested it against the soft SVM models with either a Quadratic or
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Gaussian kernel on some public data sets. However, there is no theoretical analysis of
QSVM model and in all Dagher’s computational experiments the cross-terms in the
objective function of the model was omitted to avoid the computational difficulty.
In this paper, following the logic of linear SVMs, to form a soft quadratic surface
SVM (SQSSVM) model, we directly introduce the quadratic surface into the soft
linear SVMs. The proposed SQSSVM model can handle those difficult cases with
a large amount of outliers and noise, which can not be classified well by Dagher’s
model and other linear SVMs with kernels. We will derive some theoretical prop-
erties (such as solvability, uniqueness and support vector representation (Schölkopf
and Smola, 2002) of the optimal solution) of the proposed SQSSVM model and
conduct computational experiments on randomly generated and public data sets to
show that the new model indeed may outperform Dagher’s model and soft SVM
models with a Quadratic or Gaussian kernel.

The rest of the paper is arranged as following: Section 2 provides a review of
the linear SVM and Dagher’s QSVM models. The SQSSVM model is proposed in
Sec. 3. Some theoretical properties of the SQSSVM model are derived from the
optimization point of view in Sec. 4. The SQSSVM model is tested on artificial and
five public benchmark classifying data sets with results reported in Secs. 5 and 6.
Some concluding remarks are given in Sec. 7.

In this paper, R denotes the set of real numbers, R
m the m-dimensional

Euclidean space, R
m×m the space of all m × m matrices, and ‖x‖2 means the

�2-norm of vector x.

2. Review of SVM and Dagher’s QSVM Models

In this section, we review some basic ideas of linear SVM models for binary classi-
fication. Dagher’s QSVM models are also reviewed.

Definition 1 (Deng et al., 2013). Consider a training data set {(x1, y1), . . . ,
(xi, yi), . . . , (xn, yn)}, where xi ∈ R

m, yi ∈ {+1,−1}, i = 1, . . . , n. If there exists
(u, d) ∈ R

m × R
1 such that

yi(uT xi + d) ≥ 1 (2)

for all i = 1, . . . , n, then we say the training data set is linearly separable.

Given a training point xi ∈ R
m, its class label yi ∈ {+1,−1} and a linear

function f(x) = uT x+ d, where (u, d) ∈ R
m ×R

1, the following four definitions are
then given.

Definition 2 (Dagher, 2008). β̂i := yif(xi) is called the functional margin at
point xi with respect to f(x) = 0.

Definition 3. The vector ∇f(xi) (= u) is called the gradient direction at point xi

with respect to f(x) = f(xi). If yi = +1 (or −1), the negative (or positive) gradient
direction −u (or u) is called the related gradient direction at point xi with respect
to f(x) = f(xi).
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Definition 4 (Dagher, 2008). The related gradient direction at point xi with
respect to f(x) = f(xi) intercepts the hyperplane f(x) = 0 at a point xB. The
length of segment xixB, denoted as βi, is called the geometrical margin at point xi

with respect to f(x) = 0.

Definition 5. The related gradient direction at point xi with respect to f(x) =
f(xi) intercepts the hyperplane f(x) = +1 (or −1) at a point xI. The length of
segment xIxB, denoted as β̄i, is called the relative geometrical margin at the point
xi with respect to f(x) = 0.

Figure 1 illustrates xi,xI,xB, β̂i, βi and β̄i for m = 2. In this figure, the red
line is the separating line of the two classes. Moreover, the relationship between
the functional and geometrical margin at a training point xi is βi = β̂i

‖u‖2
(Dagher,

2008). Also, expression (2) implies that each training point has a no-less-than 1
functional margin. Then, at point xi, β̄i = ‖xB − xI‖2 = 1

‖u‖2
. Thus, in this

situation, for all training points xi, i = 1, . . . , n, β̄1 = β̄2 = · · · = β̄n. However, this
phenomenon does not happen during the building of the QSSVM models in Sec. 3.
The objective of the SVM model can be restated as “to maximize the sum of the
relative geometrical margins at all training points with respect to f(x) = 0 subject
to the condition that each training point has a no-less-than 1 functional margin”.
(See Fig. 1, where the distance between the two blue lines is maximized subject to
the condition that no training point exists between the two blue lines.)

Fig. 1. Building a linear SVM.
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Hence, for a linearly separable training data set {(x1, y1), . . . , (xn, yn)}, the
following optimization problem was proposed (Boser et al., 1992):

min
1
2
‖u‖2

2

s.t. yi(uT xi + d) ≥ 1, i = 1, 2, . . . , n, (SVM)

(u, d) ∈ R
m × R

1.

However, in general, the training data set is not linearly separable but separable by
a nonlinear surface (Drucker et al., 1999). Then, we have the following SVM model
with a kernel for nonlinear separation (Cortes and Vapnik, 1995):

min
1
2
‖v‖2

2

s.t. yi(vT φ(xi) + d) ≥ 1, i = 1, 2, . . . , n, (KSVM)

(v, d) ∈ R
l × R

1, i = 1, 2, . . . , n,

where φ(x) : R
m → R

l, with m ≤ l, is a nonlinear kernel function. Also, with
respect to φ(x), a kernel for two training points xi and xj is defined as
K(xi,xj) = φ(xi)T φ(xj) (Vapnik, 2000). Two well-known kernels are Gaussian ker-
nel K(xi,xj) = exp(− ‖xi−xj‖2

2
2σ2 ) and Quadratic kernel K(xi,xj) = (a + (xi)T xj)2

(Schölkopf and Smola, 2002). Moreover, to handle the training data set with out-
liers and noise, Vapnik (1998) proposed a soft SVM model with a kernel, by adding
a slack variable ξi ≥ 0 for each constraint in (SVM) and a number η̂ > 0 as the
penalty value for each ξi appeared in the objective function:

min
1
2
‖v‖2

2 + η̂
n∑

i=1

ξi

s.t. yi(vT φ(xi) + d) ≥ 1 − ξi, i = 1, 2, . . . , n, (SKSVM)

(v, d) ∈ R
l × R

1, ξi ≥ 0, i = 1, 2, . . . , n,

Lin (2001) provided an optimization point of view of soft SVMs with kernels. And
some variants of soft SVMs with different kernels can be referred to Chen et al.
(2012), Liu and Yuan (2011), Martin-Barragan et al. (2007).

In Dagher (2008), the parameter set (W,b, c) of a quadratic surface

g(x) :=
1
2
xT Wx + bT x + c = 0, (3)

where

W = WT =




w11 w12 · · · w1m

w12 w22 · · · w2m

...

w1m w2m · · · wmm


, b =




b1

b2

...

bm


 ∈ R

m, and c ∈ R,
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was found directly to separate the n training points into two classes, without using
any kernel function. Dagher (2008) first proposed the following QSVM model:

min
n∑

i=1

(Wxi)T Wxi + 2
n∑

i=1

bT Wxi + nbT b

s.t. yi

(
1
2
(xi)T Wxi + bT xi + c

)
≥ 1, i = 1, . . . , n, (QSVM1)

W = WT ∈ R
m×m, (b, c) ∈ R

m × R
1.

Moreover, to avoid the computational difficulty, Dagher proposed the following mod-
ified QSVM model by omitting the cross-terms in the objective function:

min
n∑

i=1

(Wxi)T Wxi + nbT b

s.t. yi

(
1
2
(xi)T Wxi + bT xi + c

)
≥ 1, i = 1, . . . , n, (QSVM2)

W = WT ∈ R
m×m, (b, c) ∈ R

m × R
1.

and then used this model for all the numerical tests and experiments. In Sec. 3,
following the logic of linear SVM models, we will introduce the quadratic surface
directly into soft SVM model to propose a kernel-free SQSSVM model.

3. Quadratic Surface Support Vector Machine Models

In this section, a quadratic surface is used to separate the training data set into two
classes instead of a hyperplane, to develop a SQSSVM model.

The proposed quadratic surface SVM (QSSVM) intends to find the parameter
set (W,b, c) of a quadratic surface g(x) := 1

2x
T Wx + bT x + c = 0 that sepa-

rates the n training points {x1, . . . ,xi, . . . ,xn} into two classes, with a maximum
separation.

Definition 6. Consider a training data set {(x1, y1), . . . , (xi, yi), . . . , (xn, yn)},
where xi ∈ R

m, yi ∈ {+1,−1}, i = 1, . . . , n. If there exist W = WT ∈ R
m×m,

(b, c) ∈ R
m × R

1 such that

yi

(
1
2
(xi)T Wxi + uT xi + c

)
≥ 1, (4)

for all i = 1, . . . , n, then we say the training data set is quadratically separable.

Given a training point xi ∈ R
m, its class label yi ∈ {+1,−1} and a quadratic

function g(x) = 1
2x

T Wx+bT x+c, where W = WT ∈ R
m×m and (b, c) ∈ R

m×R
1,

1650046-6

A
si

a 
Pa

c.
 J

. O
pe

r.
 R

es
. 2

01
6.

33
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

s.
 I

nt
er

lib
ra

ry
 L

oa
n 

on
 0

8/
21

/1
7.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

November 28, 2016 16:44 WSPC/S0217-5959 APJOR 1650046.tex

Soft Quadratic Surface Support Vector Machine

the following four definitions are then given:

Definition 7 (Dagher, 2008). γ̂i := yig(xi) is called the functional margin at
point xi with respect to g(x) = 0.

Definition 8. The vector ∇g(xi) (= Wxi + b) is called the gradient direction at
point xi with respect to g(x) = g(xi). If yi = +1 (or −1), the negative (or positive)
gradient direction −∇g(xi) (or ∇g(xi)) is called the related gradient direction at
point xi with respect to g(x) = g(xi).

Definition 9 (Dagher, 2008). The related gradient direction at point xi with
respect to g(x) = g(xi) intercepts the quadratic surface g(x) = 0 at a point xB.
The length of the segment xixB, denoted as γi, is called the geometrical margin at
point xi with respect to g(x) = 0.

Definition 10. The related gradient direction at point xi with respect to g(x) =
g(xi) intercepts the surface g(x) = +1 (or −1) at a point xI. The length of the
segment xIxB, denoted as γ̄i, is called the relative geometrical margin at the point
xi with respect to g(x) = 0.

Figure 2 illustrates the xi, xI, xB, γ̂i, γi and γ̄i for m = 2, where g(x) = 0 is
the red separating quadratic curve. Expression (4) implies that γ̂i = yig(xi) ≥ 1,

i = 1, . . . , n, which indicates that each training point has a no-less-than 1 functional
margin.

Fig. 2. Building a quadratic surface SVM.
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Moreover, the relative geometrical margin γ̄i at the point xi can be approximated
as follows. Let x0 be the origin of R

m. We may see from Fig. 2 that
−−−→
x0xB =−−→

x0xI +
−−−→
xIxB and

−−−→
xIxB = −γ̄i

∇g(xi)
‖∇g(xi)‖2

. Thus, xB = xI − γ̄i
∇g(xi)

‖∇g(xi)‖2
. Taylor’s

expansion says that g(xB) ≈ g(xI)+∇g(xI)T (xB−xI). Noting that g(xB) = 0 and
g(xI) = 1, then we have

0 ≈ 1 + ∇g(xI)T (xB − xI) = 1 + ∇g(xI)T

(
−γ̄i

∇g(xi)
‖∇g(xi)‖2

)
,

which infers that γ̄i ≈ ‖∇g(xi)‖2
∇g(xI)T ∇g(xi)

. Similarly,

g(xI) ≈ g(xi) + ∇g(xi)T (xI − xi)

g(xi) ≈ g(xI) + ∇g(xI)T (xi − xI)

and xI − xi = − γi−γ̄i

‖∇g(xi)‖2
∇g(xi), which is inferred by

−−→
x0xI − −−→

x0xi =
−−→
xixI. Hence

∇g(xI)T∇g(xi) ≈ ∇g(xi)T∇g(xi). Consequently, at point xi, γ̄i = ‖xB − xI‖2 ≈
‖∇g(xi)‖2

∇g(xI)T ∇g(xi)
≈ 1

‖∇g(xi)‖2
= 1

‖Wxi+b‖2
. Note that, in general, γ̄i �= γ̄j for xi �= xj .

This situation is different from that in the SVM model.
The objective of the QSSVM can be stated as “to maximize the sum of the

approximated relative geometrical margins at all training points with respect to
g(x) = 0 subject to the condition that each training point has a no-less-than 1
functional margin”. (See Fig. 2, where the distance between the two blue curves is
maximized subject to the condition that no training point exists between the two
blue curves.)

Thus, for a quadratically separable training data set {(x1, y1), . . . , (xn, yn)}, we
consider the following quadratic surface SVM model:

min
n∑

i=1

‖Wxi + b‖2
2

s.t. yi

(
1
2
(xi)T Wxi + bT xi + c

)
≥ 1, i = 1, . . . , n, (QSSVM)

W = WT ∈ R
m×m, (b, c) ∈ R

m × R
1.

However, if the training data set is not quadratically separable, for a separating
quadratic surface g(x) = 0, one of the following two situations would occur for
some training points:

Situation 1 : for point xi, yi = −1, but 1
2 (xi)T Wxi + bT xi + c > −1,

Situation 2 : for point xj , yj = +1, but 1
2 (xj)T Wxj + bT xj + c < +1.

These points are referred to as the outliers of the data set with respect to
g(x) = 0 (Brooks, 2011). In this case, the proposed model (QSSVM) would become
infeasible, since no quadratic surface can separate all training points into their
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corresponding classes correctly. To take care of this situation, similar to the devel-
opment of the soft SVM model, we add a slack variable ξi ≥ 0 for each constraint
in (QSSVM) and a number η̂ > 0 as the penalty value for each ξi in the objective
function. Then we propose the following SQSSVM model:

min
n∑

i=1

‖Wxi + b‖2
2 + η̂

n∑
i=1

ξi

s.t. yi

(
1
2
(xi)T Wxi + bT xi + c

)
≥ 1 − ξi, i = 1, . . . , n,

ξi ≥ 0, i = 1, . . . , n, (SQSSVM)

W = WT ∈ R
m×m, (b, c) ∈ R

m × R
1.

The main advantages of the model (SQSSVM) over the model (QSSVM) are
reflected in the generalization ability and robustness to outliers.

Note that in models (QSSVM) and (SQSSVM), the matrix W is symmetric. To
simplify these two models, we may convert each of them into an equivalent form
as follows. First, let W be the vector formed by taking the m2+m

2 elements of the
upper elements of the upper triangle part of the matrix W , i.e.,

W =
[
w11 w12 · · · w1m w22 · · · w2m · · · wmm

]T ∈ R
m2+m

2 . (5)

Then, construct an m × (m2+m
2 ) matrix M i for the training point xi =

[xi
1, x

i
2, . . . , x

i
m]T ∈ R

m as follows. For the j-th row of M i in R
m2+m

2 , j = 1, . . . , m,
check the elements of W one by one. If the pth element of W is wjk or wkj for
some k = 1, 2, . . . , m, then assign the pth element of the jth row of M i to be xi

k.
Otherwise, assign it to be 0.

Also let matrix Hi = [M i, I] ∈ R
m×( m2+m

2 +m), i = 1, . . . , n, where I is the

m-dimensional identity matrix. Then, define the vector of variables z =
[

W
b

]
∈

R
m2+3m

2 and the vector si = [12xi
1x

i
1, . . . , x

i
1x

i
m, 1

2xi
2x

i
2, . . . , x

i
2x

i
m, . . . , 1

2xi
m−1x

i
m−1,

xi
m−1x

i
m, 1

2xi
mxi

m, xi
1, x

i
2, . . . , x

i
m] ∈ R

(m+1)m
2 +m. So the objective of the model

(QSSVM) becomes
∑n

i=1 ‖Wxi + b‖2
2 =

∑n
i=1 ‖Hiz‖2

2 =
∑n

i=1(H
iz)T (Hiz) =∑n

i=1 zT (Hi)T Hiz = zT (
∑n

i=1(H
i)T Hi)z. Let G =

∑n
i=1(H

i)T Hi ∈
R

( m2+3m
2 )×( m2+3m

2 ), then model (QSSVM) becomes

min zT Gz

s.t. yi((si)T z + c) ≥ 1, i = 1, . . . , n, (QSSVM ′)

(z, c) ∈ R
m2+3m

2 × R
1.
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Similarly, the model (SQSSVM) can be reformulated as

min zT Gz + η̂

n∑
i=1

ξi

s.t. yi((si)T z + c) ≥ 1 − ξi, i = 1, . . . , n, (SQSSVM ′)

(z, c) ∈ R
m2+3m

2 × R
1, ξi ≥ 0, i = 1, . . . , n.

Note that G is positive semidefinite since zT Gz =
∑n

i=1 ‖Hiz‖2
2 ≥ 0 for any z ∈

R
m2+3m

2 . Consequently, both of models (QSSVM ′) and (SQSSVM ′) are linearly
constrained convex quadratic optimization problems, which can be solved efficiently
(Fang and Puthenpura, 1993).

4. Theoretical Properties of the SQSSVM Model

In this section, we study some theoretical properties of the model (SQSSVM ′). The
solvability of the model (SQSSVM ′) is first studied as follows.

Theorem 1. For any given training data set {(x1, y1), . . . , (xi, yi), . . . , (xn, yn)}
and η̂ > 0, there exists an optimal solution to the model (SQSSVM ′) with a finite
objective value.

If the training data set is quadratically separable, it is easy to verify that the
model (QSSVM ′) has at least one optimal solution using a similar proof of Theo-
rem 1. Then, the next result states the relationship between the optimal solutions
of models (QSSVM ′) and (SQSSVM ′).

Theorem 2. For any given η̂ > 0, let (zη̂, cη̂, ξη̂) be an optimal solution of model
(SQSSVM ′) and assume that the sequence {(zη̂, cη̂, ξη̂)} converges to (z∗, c∗, ξ∗)
as η̂ → ∞. If the training data set is quadratically separable, then ξ∗ = 0 (where
0 = (0, . . . , 0)T ∈ R

n) and (z∗, c∗) is an optimal solution of model (QSSVM ′).

Let F∗ = {(z, c, ξ) ∈ R
m2+3m

2 × R
1 × R

n|(z, c, ξ) is an optimal solution to the
model (SQSSVM ′)}. Then F∗ �= ∅ by Theorem 1. Moreover, we have the next three
results.

Theorem 3. For any given training data set {(x1, y1), . . . , (xi, yi), . . . , (xn, yn)}
and η̂ > 0, if G is positive definite, then the optimal solution of model (SQSSVM ′)
is unique with respect to the variable z.

Thus, for any given training data set, if G is positive definite, the main charac-
teristics of the separating quadratic surface are uniquely determined by the optimal
solution of model (SQSSVM ′) with respect to the variable z.

Theorem 4. For any given training data set {(x1, y1), . . . , (xi, yi), . . . , (xn, yn)}
and η̂ > 0, if G is positive definite, then there exist constants c and c such that
c ≤ c ≤ c, for any (z, c, ξ) ∈ F∗.
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Theorem 5. If the training data set is quadratically separable and G is positive
definite, then for any given sufficiently large η̂ > 0, the optimal solution of model
(SQSSVM ′) is unique with respect to the variable c.

From Theorems 3 and 5, we know that if the training data set is quadratically
separable and G is positive definite, then, for any sufficiently large η̂ > 0, the model
(SQSSVM ′) generates a unique separating quadratic surface. Generally speaking,
for any given training data set with G being positive definite, we may solve the
model (SQSSVM ′) with a sufficiently large η̂ > 0 to generate a separating quadratic
surface for binary classification.

Note that if the matrix G in model (SQSSVM ′) is only positive semidefinite,
we can always append a perturbation such that the matrix G + εI (ε > 0, I is the
identity matrix) becomes positive definite. Then, consider the following perturbed
model:

min zT (G + εI)z + η̂

n∑
i=1

ξi

s.t. yi((si)T z + c) ≥ 1 − ξi, i = 1, 2, . . . , n,

ξi ≥ 0, i = 1, . . . , n, (SQSSVM ′-ε)

(z, c) ∈ R
m2+3m+2

2 .

Similar to the proof of Theorem 1, we can verify that the model (SQSSVM ′-ε)
has at least one optimal solution. Let (zε, cε, ξε) be an optimal solution of model
(SQSSVM ′-ε), then the model (SQSSVM ′) and its perturbed model (SQSSVM ′-ε)
are related by the next two results.

Lemma 6. For any given training data set {(x1, y1), . . . , (xi, yi), . . . , (xn, yn)} and
η̂ > 0, if the optimal value of model (SQSSVM ′) is v and the optimal value of model
(SQSSVM ′-ε) is vε, for a given ε > 0, then vε → v as ε → 0.

Remark 1. For any given η̂ > 0 and 0 < ε1 < ε2, we have vε1 ≤ (zε2)T Gzε2 +
ε1(zε2)T (zε2) + η̂

∑n
i=1 ξε2

i < (zε2)T Gzε2 + ε2(zε2)T (zε2) + η̂
∑n

i=1 ξε2
i = vε2 . Hence

the sequence {vε} monotonically decreases to v as ε ↘ 0.

Theorem 7. For any given training data set {(x1, y1), . . . , (xi, yi), . . . , (xn, yn)}
and η̂ > 0, if the sequence {(zε, cε, ξε)} converges to (z0, c0, ξ0) as ε → 0, then
(z0, c0, ξ0) ∈ F∗ and (z0)T z0 ≤ zT z, for any (z, c, ξ) ∈ F∗.

In conclusion, for a training data set with G being positive semidefinite only,
we may solve the perturbed model (SQSSVM ′-ε) with a sufficiently small ε > 0
to generate a separating quadratic surface for binary classification. Hence, without
loss of generality, G is supposed to be positive definite in the SQSSVM model.
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Furthermore, the dual problem of (SQSSVM ′) can be formulated as:

max
n∑

i=1

αi − 1
4

(
n∑

i=1

αiy
isi

)T

G−1

(
n∑

i=1

αiy
isi

)

s.t.
n∑

i=1

αiy
i = 0, (DSQSSVM)

0 ≤ αi ≤ η̂, i = 1, . . . , n.

Problems (SQSSVM ′) and (DSQSSVM) are both linearly constrained convex
quadratic optimization problems, no duality gap exists. The optimality conditions
(KKT conditions) for problems (SQSSVM ′) and (DSQSSVM) are:

yi((si)T z + c) ≥ 1 − ξi, ξi ≥ 0, i = 1, . . . , n,

n∑
i=1

αiy
i = 0, 0 ≤ αi ≤ η̂, i = 1, . . . , n,

αi(yi((si)T z + c) − 1 + ξi) = 0, ξi(η̂ − αi) = 0, i = 1, . . . , n.

We can solve the above optimality conditions to get the optimal solutions (z∗, c∗, ξ∗)
and (α∗

1, α
∗
2, . . . , α

∗
n) of problems (SQSSVM ′) and (DSQSSVM), respectively. Then

we have the following results by Lagrangian dual theory:

z∗ =
n∑

i=1

α∗
i

(
1
2
yiG−1si

)
.

• If α∗
i = 0; then ξ∗i = 0 and yi((si)T z∗ + c∗) ≥ 1, which indicate that point xi is

inside the scope of one class.
• If 0 < α∗

i < η̂; then ξ∗i = 0 and yi((si)T z∗ + c∗) = 1, which indicate that point xi

is a support vector (Schölkopf and Smola, 2002) on the boundary.
• If α∗

i = η̂; then ξ∗i ≥ 0 and yi((si)T z∗ + c∗) ≤ 1, which indicate that point xi may
be an outlier.

Thus, we can solve the problem (DSQSSVM) to obtain its optimal solution
(α∗

1, α
∗
2, . . . , α

∗
n) and then get parameters (z∗, c∗) of the separating quadratic sur-

face by expression (5) and c∗ = 1/ysv − (ssv)T z∗ (for any support vector). The
SQSSVM model is related to the support vector theory and the parameters (z∗, c∗)
of obtained classifier is a linear combination of the opportune evaluations of the
training data set {(xi, yi), i = 1, . . . , n}.

5. Computational Experiments on Effectiveness and Efficiency

In this section, we test the classification accuracy and efficiency of the SQSSVM
model on three-dimensional (3D) artificial and real-world classifying data sets. We
also test Dagher’s modified QSVM model, our QSSVM model and soft SVM models
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with a Quadratic or Gaussian kernel for comparisons. All computational experi-
ments in this paper are performed using MATLAB (R2013a) software on a per-
sonal laptop equipped with Intel Core i5 2.40GHz CPU, 2.5GB usable RAM and
Microsoft Windows 7 Professional. The SQSSVM, QSSVM and Dagher’s modified
QSVM models are implemented using the interior point algorithm in the mod-
ule “quadprog” of MATLAB, while the soft SVM models with a Quadratic or
Gaussian kernel are implemented using the sequential minimal optimization algo-
rithm (Chang and Lin, 2011) in the MATLAB code. For all models, we use the
grid method to find the best parameter η̂ and a (i.e., the parameter in Quadratic
kernel): log2 η̂, log2 a ∈ {−4,−5, . . . , 9, 10}, the parameter σ of Gaussian kernel is
set to be the median of the between-class pairwise Euclidean distances of training
points as in Liu and Yuan (2011). Note that, the recorded CPU time in this paper
doesn’t include the time of tuning parameters in the model.

First, we generate 90 different 3D quadratic surfaces in three types, i.e., 30
quadratic surfaces for each type. Since a 3D quadratic surface 1

2x
T Wx+bT x+c = 0

can be characterized by the eigenvalues of the matrix W , the first, second and third
type has one, two and three positive eigenvalues, respectively. For each 3D quadratic
surface, 200 points (labeled as Class 1) are generated on one side and another 200
points (labeled as Class 2) are generated on the other side. In this way, a total of
90 3D artificial classifying data sets are generated. One example of the second type
artificial data set is shown in Fig. 3, where the red and blue points are labeled as
Class 1 and Class 2, respectively.

Next, for each 3D artificial classifying data set, we randomly pick k% of the
400 points (k

2% from Class 1 and k
2% from Class 2) as the training data set. The

soft SVM models with a Quadratic or Gaussian kernel, Dagher’s modified QSVM
model, QSSVM model and SQSSVM model are trained, respectively, using the
training data set to generate parameters in corresponding classifiers. Then these
classifiers are used to classify the remaining 400(1− k%) points in the 3D artificial
data set and misclassification rates are calculated. In our experiments, like most

Fig. 3. A second type artificial data set.

1650046-13

A
si

a 
Pa

c.
 J

. O
pe

r.
 R

es
. 2

01
6.

33
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

s.
 I

nt
er

lib
ra

ry
 L

oa
n 

on
 0

8/
21

/1
7.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



2nd Reading

November 28, 2016 16:44 WSPC/S0217-5959 APJOR 1650046.tex

J. Luo et al.

common practices reported in (Dagher, 2008; Liu and Yuan, 2011), k is chosen
to be 10, 20 and 40. To be statistically meaningful, for each given k, we conduct
tests with selected k% of the 400 points for all 90 3D artificial classifying data
sets. For each model, the mean, standard deviation (std), minimum (min) and
maximum (max) of misclassification rates (MR) and average CPU time of the 90
data sets are reported in Table 2. A smaller misclassification rate indicates that
the corresponding model performs better for binary classification. The soft SVM
models with Quadratic and Gaussian kernel are denoted by “SVM GausKer” and
“SVM QuadKer”, respectively, in all tables of this paper.

To further test the classification accuracy and efficiency of the SQSSVM model,
five public benchmark databases, often used in (Brooks, 2011; Dagher, 2008; Liu
and Yuan, 2011) from the most popular data sets in UCI repository (Bache and
Lichman, 2013), are used for additional experiments. For binary classification, if one
database contains more than two classes, we only choose two classes of this database
for test. The descriptions of these real-world data sets for binary classifications are
listed in Table 1.

For each of these real-world Data sets, we randomly select k% as the training
data set, the remaining points are included as the testing data set. The SQSSVM
model is first trained using the training data set to generate the parameters of
the classifying quadratic surface. Then the quadratic surface is used to classify the
testing data set and the misclassification rate is calculated. Like before, k is chosen
to be 10, 20 and 40. To be statistically meaningful, for each given k, we repeat
the test with randomly selected k% points for 100 times. The mean and standard
deviation of the calculated misclassification rates and average CPU time of the 100
experiments are reported in Tables 2 and 3. For fair comparisons, we carried out
similar experiments for the other four models using the same training and testing
data set, and recorded the results in Tables 2 and 3. Furthermore, for the Skin data
set of large size, k is set to be 0.25%, 0.5% and 1% to show the effectiveness of the
models and to avoid memory overflows.

From Tables 2 and 3, we have the following observations: For most experi-
ments on the tested data sets, the mean and standard deviation of misclassification
rates produced by the SQSSVM model are smaller than those produced by the
other models; there is not much difference among the CPU time of all models; the

Table 1. Descriptions of real-world data sets.

Data set Class 1 Class 2

Name # of points Name # of points

Iris Versicolour 50 Virginica 50
Car Evaluation Unacc 1210 Acc 384
Wisconsin Breast Cancer Benign 458 Malignant 241
Seeds Kama 70 Rosa 70
Skin Skin 194198 Non-skin 50859
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Table 2. Artificial, iris and car evaluation data test.

k% Model type Artificial data Iris data Car evaluation data

MR(%) CPU(s) MR(%) CPU(s) MR(%) CPU(s)
mean/std mean/std mean/std

10% SVM GausKer 49.21/2.27 0.03 14.07/7.00 0.02 14.10/1.63 0.14
SVM QuadKer 49.84/2.56 0.13 16.21/8.22 0.04 13.72/4.62 0.38

QSVM2 15.81/14.65 0.11 11.12/5.56 0.02 11.35/2.17 0.18
QSSVM 14.62/14.09 0.12 10.87/5.41 0.02 9.99/1.89 0.19

SQSSVM 13.53/11.82 0.13 9.56/4.88 0.02 8.60/1.56 0.19

20% SVM GausKer 47.24/2.16 0.05 8.82/4.28 0.03 9.13/0.99 0.21
SVM QuadKer 48.29/2.47 0.21 11.39/5.55 0.05 8.46/5.64 0.57

QSVM2 11.55/13.73 0.17 7.93/4.32 0.02 8.88/2.93 0.29

QSSVM 10.30/13.55 0.19 7.74/4.18 0.02 7.54/2.86 0.30
SQSSVM 8.14/8.12 0.22 7.21/3.49 0.02 6.38/1.09 0.32

40% SVM GausKer 45.61/2.02 0.07 6.85/2.68 0.08 6.91/8.97 0.48
SVM QuadKer 47.35/2.21 0.30 9.15/4.51 0.09 6.81/8.94 1.35

QSVM2 9.97/15.63 0.28 8.41/5.51 0.05 15.94/5.18 0.71
QSSVM 8.87/15.59 0.34 8.15/5.39 0.06 15.48/5.08 0.72
SQSSVM 5.19/6.88 0.41 5.33/3.22 0.06 4.61/0.95 0.73

Table 3. Wisconsin breast cancer, seeds and skin data test.

Model type WBC data Seeds data Skin data

k% MR(%) CPU(s) k% MR(%) CPU(s) k% MR(%) CPU(s)
mean/std mean/std mean/std

SVM GausKer 10% 5.80/0.95 0.05 10% 11.21/5.32 2.76 0.25% 1.34/0.23 1.61
SVM QuadKer 7.93/2.23 0.06 12.97/5.99 3.99 1.81/0.40 0.76

QSVM2 6.36/2.00 0.16 10.56/3.61 3.01 0.73/0.54 3.10
QSSVM 5.51/1.71 0.16 10.33/3.46 3.05 0.71/0.50 3.21
SQSSVM 4.63/1.18 0.17 9.56/1.97 3.11 0.47/0.21 3.38

SVM GausKer 20% 4.81/0.88 0.07 20% 9.16/2.61 3.29 0.5% 1.02/0.06 2.06
SVM QuadKer 6.59/1.86 0.08 9.86/5.11 5.12 1.26/0.13 1.07

QSVM2 6.52/1.81 0.25 8.32/2.51 7.41 0.67/1.84 3.32
QSSVM 5.26/1.37 0.26 8.22/2.45 7.48 0.64/1.78 3.49
SQSSVM 3.74/0.64 0.27 7.92/2.39 7.56 0.29/0.09 3.77

SVM GausKer 40% 3.61/0.59 0.11 40% 7.89/1.69 3.60 1% 0.90/0.04 2.91
SVM QuadKer 5.27/0.91 0.17 7.97/4.09 5.91 1.01/0.08 1.65

QSVM2 6.86/1.49 0.44 7.06/2.14 9.19 0.56/0.60 3.93
QSSVM 4.40/0.97 0.45 7.01/2.13 9.28 0.52/0.53 4.12
SQSSVM 3.14/0.30 0.47 6.81/1.93 9.41 0.21/0.03 4.41

QSSVM model produces more accurate classification than Dagher’s modified QSVM
model.

6. Computational Experiments on Robustness

For real world applications, available data sets usually contain outliers (Brooks,
2011), (Brooks, 2011), i.e., the points mislabeled on the wrong side. Hence, in this
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the effectiveness and robustness of the SQSSVM model using the artificial training
data with outliers.

For each 3D artificial classifying data set, we randomly pick k% of all 400 points
as the training data set like before, the remaining points are included as the testing
data set. Then p% of all points in this training data set are randomly selected and
deliberately mislabeled as the outliers. Also, like most common practices reported
in Brooks (2011), p is chosen to be 5, 10 and 15. Afterwards, for each given p, all five
models are trained respectively using the training data set with p% outliers to gen-
erate the parameters in the corresponding classifiers. Then, we used the classifiers
to classify the corresponding testing data set and calculated the misclassification
rates. Like before, k is chosen to be 10, 20 and 40. For each given k and p, the tests
are repeated with selected k% of the 400 points for all 90 3D artificial training data
sets with p% outliers. Finally, for p being 5, 10 and 15, the computational results
are reported in Table 4. To be compared, the computational results in Table 2 are
also included in Table 4 as p being 0.

From Table 4, we have the following observations: For all experiments on the
artificial data sets, the mean of the misclassification rates produced by the SQSSVM
model is much smaller than that produced by Dagher’s modified QSVM model, the
QSSVM model and soft SVM models with a Quadratic or Gaussian kernel; as the
size of the training data set or the percentage of outliers increases, the superiority
of the SQSSVM model in classification accuracy becomes more evident, and the
performance of Dagher’s modified QSVM model gets much worse.

7. Conclusions and Discussions

In this paper, we have proposed an SQSSVM model for data classification directly
using a quadratic function for separation. We have not only studied the theoretical

Table 4. Artificial training data set with p% outliers.

k% Model type Mean misclassification rate (%) CPU time (s)

p = 0 p = 5 p = 10 p = 15 p = 0 p = 5 p = 10 p = 15

10% SVM GausKer 49.21 47.83 47.86 48.45 0.03 0.03 0.04 0.03
SVM QuadKer 49.84 48.36 48.77 48.81 0.13 0.13 0.14 0.15

QSVM2 15.81 36.56 39.67 43.76 0.11 0.11 0.12 0.13
QSSVM 14.62 35.97 39.32 43.63 0.12 0.12 0.13 0.13
SQSSVM 13.53 18.61 20.10 23.98 0.13 0.13 0.12 0.14

20% SVM GausKer 47.24 46.98 47.56 47.80 0.05 0.05 0.06 0.05
SVM QuadKer 48.29 47.85 48.61 48.87 0.21 0.21 0.22 0.22

QSVM2 11.55 41.40 42.88 44.70 0.17 0.17 0.18 0.18
QSSVM 10.30 40.82 42.53 44.56 0.19 0.19 0.20 0.19
SQSSVM 8.14 11.56 14.47 15.29 0.22 0.22 0.23 0.21

40% SVM GausKer 45.61 45.25 46.61 46.03 0.07 0.07 0.08 0.08
SVM QuadKer 47.35 46.23 47.27 47.23 0.30 0.30 0.31 0.31

QSVM2 9.97 45.06 45.70 47.93 0.28 0.28 0.28 0.29
QSSVM 8.87 44.52 45.41 47.80 0.34 0.34 0.34 0.35
SQSSVM 5.19 8.85 11.89 12.45 0.41 0.41 0.42 0.42
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properties of the proposed model, but also conducted extensive computational
experiments to validate its superior performance. Our major findings are summa-
rized as below.

• Unlike soft SVM models with kernels, the proposed SQSSVM model does not
need to use any kernel function or to tune the parameters in the kernel function
for binary classification, to save much effort and time.

• For the tested artificial data, the SQSSVM model yields much more accurate
classification than Dagher’s modified model, the QSSVM model and soft SVM
models with a Quadratic or Gaussian kernel. As the number of outliers in the
training data set increases, the superiority in the classification accuracy of the
SQSSVM model becomes even more evident. Also the SQSSVM model is shown
to be much more robust than the QSSVM and Dagher’s modified QSVM model.

• For all numerical experiments, the QSSVM model outperforms Dagher’s modified
QSVM model in terms of classification accuracy.

• The SQSSVM model successfully handles five real-world benchmark classifying
data sets much more accurately than other models.

We are interested in studying the statistical properties of the classifier produced
by the SQSSVM model such as its relationships with Vapnik–Chervonenkis bounds
and reproducing kernel Hilbert space theories. We are also interested in applying
the SQSSVM model in breast cancer diagnosis (Martin-Barragan et al., 2007) and
planar segmentation for urban terrain data (Luo et al., 2013).

Appendix: Proof of Theorems 1–7

The proof of Theorem 1 can be derived as follows.

Proof. Take arbitrary (z̃, c̃) ∈ R
m2+3m+2

2 and let ξ̃i = max{0, 1−yi((si)T z̃+c̃)}, i =
1, . . . , n. It is easy to see that (z̃, c̃, ξ̃) is feasible to the model (SQSSVM ′). Note that
the objective function is continuous and the feasible domain is a closed convex set
defined by linear inequalities. Moreover, for any z ∈ R

m2+3m
2 and ξi ≥ 0, i = 1, . . . , n,

zT Gz + η̂
∑n

i=1 ξi =
∑n

i=1(‖Hiz‖2
2 + η̂ξi) ≥ 0, which indicates that the objective

value is bounded below by 0 over the feasible domain. Hence there exists an optimal
solution with a finite objective value.

The proof of Theorem 2 can be derived as follows.

Proof. When the training data set is quadratically separable, it is not difficult to
see that there exists a feasible solution (ẑ, ĉ,0) to model (SQSSVM ′) with a given
η̂ > 0. We first prove that

∑n
i=1 ξη̂

i → 0 as η̂ → ∞ by contradiction. Suppose
that there exists a given δ > 0 such that for any η̂ ≥ η̂∗ := ẑT Gẑ+1

δ > 0, we have
|∑n

i=1 ξη̂
i − 0| =

∑n
i=1 ξη̂

i ≥ δ. Then, for the optimal solution (zη̂, cη̂, ξη̂) of model
(SQSSVM ′) with any given η̂ ≥ η̂∗, we have zη̂T

Gzη̂ + η̂
∑n

i=1 ξη̂
i ≥ 0 + η̂∗δ =
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0 + ẑT Gẑ + 1 > ẑT Gẑ + 0 since G is positive semidefinite. Therefore, for any given
η̂ ≥ η̂∗, (zη̂, cη̂, ξη̂) can not be an optimal solution because (ẑ, ĉ,0) is feasible to
the model (SQSSVM′). This contradiction leads to that

∑n
i=1 ξη̂

i → 0 as η̂ → ∞.
Consequently, ξη̂ → ξ∗ = 0 as η̂ → ∞.

Next, we prove that (z∗, c∗) is an optimal solution to model (QSSVM ′). Since
(zη̂, cη̂, ξη̂) is feasible to the model (SQSSVM ′) for all η̂ > 0 and the linear con-
straints are in a closed form, we have {(zη̂, cη̂, ξη̂)} converges to (z∗, c∗,0) as η̂ → ∞,
and yi((si)T z∗+c∗) ≥ 1, i = 1, . . . , n. Hence (z∗, c∗) is feasible to model (QSSVM ′).
Moreover, let (z̄, c̄) be an optimal solution to model (QSSVM ′). Then (z̄, c̄,0)
is feasible to model (SQSSVM ′). Consequently, we have zη̂T

Gzη̂ + η̂
∑n

i=1 ξη̂
i ≤

z̄T Gz̄ + 0. Let η̂ → ∞ and assume that 0 ∗ ∞ = 0 without loss of generality,
then we have z∗T Gz∗ ≤ z̄T Gz̄. Therefore, (z∗, c∗) is an optimal solution to model
(QSSVM ′).

The proof of Theorem 3 can be derived as follows.

Proof. Assume that (ẑ, ĉ, ξ̂) ∈ F∗, (z̄, c̄, ξ̄) ∈ F∗ and ẑ �= z̄. For any 0 < δ < 1,
(z̃, c̃, ξ̃) := δ(ẑ, ĉ, ξ̂) + (1 − δ)(z̄, c̄, ξ̄) is feasible to model (SQSSVM ′) due to the
convexity of the feasible domain. Therefore,

z̃T Gz̃ + η̂

n∑
i=1

ξ̃i ≥ ẑT Gẑ + η̂

n∑
i=1

ξ̂i,

z̃T Gz̃ + η̂

n∑
i=1

ξ̃i ≥ z̄T Gz̄ + η̂

n∑
i=1

ξ̄i.

Multiplying the first inequality by δ and the second by (1 − δ), we have z̃T Gz̃ +
η̂
∑n

i=1 ξ̃i ≥ δẑT Gẑ+(1− δ)z̄T Gz̄+ η̂
∑n

i=1(δξ̂i +(1− δ)ξ̄i). Equivalently, [δẑ+(1−
δ)z̄]T G[δẑ + (1 − δ)z̄] ≥ δẑT Gẑ + (1 − δ)z̄T Gz̄, and δ(1 − δ)(ẑ − z̄)T G(ẑ − z̄) ≤ 0.
When G is positive definite, we have ẑ− z̄ = 0, which contradicts to the assumption
that ẑ �= z̄.

The proof of Theorem 4 can be derived as follows.

Proof. Let (ẑ, ĉ, ξ̂) ∈ F∗. When G is positive definite, by Theorem 3, ẑ is uniquely
determined and, for each (z, c, ξ) ∈ F∗, we have z = ẑ and zT Gz + η̂

∑n
i=1 ξi =

ẑT Gẑ + η̂
∑n

i=1 ξ̂i. Consequently,
∑n

i=1 ξi =
∑n

i=1 ξ̂i := δ̄, which is uniquely
determined. Since ξi ≥ 0 for any i, we have ξi ≤ ∑n

i=1 ξi = δ̄. Therefore,
c ≤ ξj −1− (sj)T ẑ ≤ δ̄−1− (sj)T ẑ for j ∈ {j : yj = −1}, and c ≥ 1− ξj − (sj)T ẑ ≥
1 − δ̄ − (sj)T ẑ for j ∈ {j : yj = +1}. Let c = min{j:yj=−1} {δ̄ − 1 − (sj)T ẑ},
c = max{j:yj=+1}{1 − δ̄ − (sj)T ẑ}, then we have c ≤ c ≤ c.

The proof of Theorem 5 can be derived as follows.

Proof. When the training data set is quadratically separable, by a similar proof of
Theorem 2, for the model (SQSSVM ′) with any given sufficiently large η̂ > 0 and
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(z̆, c̆, ξ̆) ∈ F∗, we know ξ̆ = 0. Hence (z̆, c̆,0) is feasible to the model (SQSSVM ′),
which indicates that yi((si)T z̆ + c̆) ≥ 1, ∀i. We first prove that there exists a j ∈
{j : yj = +1} such that yj((sj)T z̆ + c̆) = 1 as follows by contradiction.

Assume this conclusion is wrong, i.e., then we have

(sj)T z̆ + c̆ > 1, for j ∈ {j : yj = +1}, (B1)

(sj)T z̆ + c̆ ≤ −1, for j ∈ {j : yj = −1}. (B2)

Let z̃ = δz̆ and c̃ = δ(c̆ + 1) − 1, for some δ ∈ (0, 1). Then expression (B2) is
equivalent to

(sj)T z̃ + c̃ ≤ −1, for j ∈ {j : yj = −1}. (B3)

Moreover, for j ∈ {j : yj = +1}, from expression (B1), we have

lim
δ→1−

[(sj)T z̃ + c̃] = lim
δ→1−

[δ(sj)T z̆ + δ(c̆ + 1) − 1] = (sj)T z̆ + c̆ > 1.

Hence, there exists a δ ∈ (0, 1) such that

(sj)T z̃ + c̃ > 1, for j ∈ {j : yj = +1}. (B4)

The expressions (B3) and (B4) indicate that (z̃, c̃,0) is feasible to model (SQSSVM ′)
and the corresponding objective value is z̃T Gz̃ + 0 = δ2z̆T Gz̆ < z̆T Gz̆ + 0, which
indicates that (z̆, c̆,0) is not an optimal solution. This contradiction infers that
there exists a j ∈ {j : yj = +1} such that yj((sj)T z̆ + c̆) = 1.

Suppose that the model (SQSSVM ′) has another optimal solution (ẑ, ĉ, ξ̂). As
before, we have ξ̂ = 0. When G is positive definite, we know z̆ = ẑ from Theorem 3.
Rewrite the two optimal solutions as (z̆, c̆,0) and (z̆, ĉ,0), respectively. From the
above arguments, we know there exist j and j̄ ∈ {j : yj = +1} such that

(sj̄)T z̆ + c̆ = 1, (sj)T z̆ + c̆ ≥ 1; (sj)T z̆ + ĉ = 1, (sj̄)T z̆ + ĉ ≥ 1.

Therefore, we have c̆ ≥ ĉ and c̆ ≤ ĉ using the above expressions. In other words,
we have c̆ = ĉ.

The proof of Lemma 6 can be derived as follows.

Proof. Let (z̃, c̃, ξ̃) ∈ F∗. If ‖z̃‖ �= 0, for (zε, cε, ξε) and any δ > 0, there exists
ε0 = δ

(z̃T )(z̃)
such that when 0 < ε < ε0, v ≤ zεT Gzε+η̂

∑n
i=1 ξε

i ≤ vε ≤ z̃T (G+εI)z̃+

η̂
∑n

i=1 ξ̃i = v + ε(z̃)T (z̃) < v + δ. That is, |vε − v| < δ. If ‖z̃‖ = 0, by the expression
v ≤ zεT Gzε + η̂

∑n
i=1 ξε

i ≤ vε ≤ z̃T (G + εI)z̃ + η̂
∑n

i=1 ξ̃i = v + ε(z̃)T (z̃) = v. we
have that v = vε. Therefore, vε → v as ε → 0.

The proof of Theorem 7 can be derived as follows.

Proof. When {(zε, cε, ξε)} → (z0, c0, ξ0) as ε → 0, obviously (z0, c0, ξ0) is feasible
to model (SQSSVM ′). By Lemma 6, we have vε → v as ε → 0. Hence we know
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(z0, c0, ξ0) ∈ F∗. For any ε > 0 and any (z, c, ξ) ∈ F∗, note that (z, c, ξ) is feasible
to problem (SQSSVM′-ε). Therefore,

(zε)T (G + εI)zε + η̂
n∑

i=1

ξε
i = (zε)T Gzε + ε(zε)T zε + η̂

n∑
i=1

ξε
i

≤ (z)T (G + εI)z + η̂

n∑
i=1

ξi = (z)T Gz + ε(z)T z + η̂

n∑
i=1

ξi.

Since (z, c, ξ) ∈ F∗, we have (z)T Gz + η̂
∑n

i=1 ξi ≤ (zε)T Gzε + η̂
∑n

i=1 ξε
i . Conse-

quently, (zε)T zε ≤ (z)T z for any ε > 0. Hence, as ε → 0, (z0)T z0 ≤ (z)T z for any
(z, c, ξ) ∈ F∗.
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