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a b s t r a c t

Support vector machines have been proven to be useful for regression analysis and forecasting. When
stochastic uncertainty is involved in the datasets, robust support vector regression (SVR) models
are useful. In this study, we proposed a kernel-free quadratic surface support vector regression
(QSSVR) model based on optimal margin distribution (OMD). This model minimizes the variance
of the functional margins of all data points to achieve better generalization capability. When the
data points exhibit stochastic uncertainty (without the assumption of any specific distribution), the
covariance information of noise is employed to construct a robust OMD-based QSSVR (RQSSVR-
OMD) model, with a set of probabilistic constraints to ensure its worst-case performance. Moreover,
the probabilistic constraints in the proposed model are proven to be equivalently reformulated as
second-order cone constraints for efficient implementation. Extensive computational experiments on
public benchmark datasets were conducted to demonstrate the superior performance of the proposed
RQSSVR-OMD model over other well-established SVR models in terms of forecasting accuracy and
time. The proposed model was also validated to successfully handle real-life uncertain battery data for
battery power-consumption forecasting.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

Prediction and forecasting are of vital importance in human
ecision-making, whereas regression analysis is widely used for
rediction and forecasting. From the viewpoint of statistical learn-
ng theory [1], support vector regression (SVR) is an extension
f the support vector machine (SVM) for regression analysis.
he first SVM was introduced by Vapnik and Lerner in 1963 for
he linear classification of a given set of input–output paired
ata points, which was subsequently improved by employing
he kernel-function technique for nonlinear classification of such
atasets [2]. Robust SVM models are used when the given data
oints involve uncertainty, such as randomly distributed noise
nd outliers [3–7]. Several SVR and robust SVR models have been
roposed [8–11] for nonlinear regression of data points, possibly
nvolving stochastic uncertainty. For practical applications, the
ccuracy of generalization, computational time, and restrictive
ssumptions of SVR are the key factors for a fair evaluation. In
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E-mail addresses: zhibindeng@ucas.edu.cn (Z. Deng), yetian@swufe.edu.cn

Y. Tian).
ttps://doi.org/10.1016/j.knosys.2022.109477
950-7051/© 2022 Elsevier B.V. All rights reserved.
this study, we proposed a new robust SVR model that effectively
conducts nonlinear regression analysis of datasets with minimal
assumptions on uncertainty in an accurate and efficient manner.

The classic SVM determines an optimal hyperplane that max-
imizes the minimum margin between two distinct classes of
labeled data points [2,12,13]. Subsequently, most developed SVM
models followed this ‘‘maximal minimum margin’’ principle and
its variants. Reyzin and Schapire [14] found that the poor margin
distribution caused by maximizing the minimum margin, such as
the boosting-style leaning algorithm ‘‘Arc-gv’’ in [15], would lead
to a poor generalization capability in accuracy. Furthermore, Gao
and Zhou [16] proved that by simultaneously maximizing the
functional margin mean and minimizing the functional margin
variance over all data points, could reduce the error in general-
ization. Motivated by this study, Zhang and Zhou [17] proposed
an ‘‘optimal margin distribution learning machine’’ (OMDLM) for
classification. Their computational experiments validated the bet-
ter (more accurate) generalization capability of OMDLM over
other state-of-the-art SVM models. This development clearly in-
dicates the crucial role of the ‘‘distribution of functional margins’’
in achieving accurate generalization.

https://doi.org/10.1016/j.knosys.2022.109477
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2022.109477&domain=pdf
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To extend the SVM model to cases in which the data points are
not completely linearly separable, the concept of ‘‘soft margin’’
was introduced by Cortes and Vapnik [2]. Regarding nonlinear
classification, Boser et al. [18] suggested an SVM model by ap-
plying a kernel method to generate a separating hyperplane that
maximizes the minimum margin in the feature space. Various
SVM models with different kernel functions such as Gaussian,
polynomial, and hyperbolic tangent functions have become read-
ily available [2,19]. Because kernel-based SVM models operate
on a higher-dimensional feature space and there is a lack of a
universal rule to select the best kernel function with the most
appropriate kernel parameters for a particular application, a sig-
nificant amount of computational time and tuning efforts may be
required for a successful application. Moreover, the possible sin-
gularity of a kernel matrix can significantly influence the accuracy
of its generalization capability. Consequently, several kernel-free
SVM models have been developed for nonlinear classification. For
instance, Astorino and Fuduli [20] proposed a spherical separating
surface with no kernel for semi-supervised classification, Luo
et al. [21] proposed a kernel-free soft-margin quadratic surface
SVM (QSSVM) for binary classification, Luo et al. [22] proposed
an unsupervised non-kernel SVM approach for unsupervised clas-
sification with application to credit risk assessment, and Gao
et al. [23] proposed a non-kernel least-squares twin SVM for
fast and accurate multiclass classification. The computational re-
sults in [21–23] support the assumption that directly adopting a
nonlinear surface for separation is an effective way to construct
kernel-free SVM models with accurate generalization capabil-
ity for general applications. Based on the QSSVM model frame-
work, Ye et al. [24,25] proposed effective kernel-free quadratic
surface SVR models for regression analysis.

The SVR model proposed by Drucker et al. [26] depends only
on a subset of the training data, ignoring any training data points
close to the model prediction in a given tube around the fit-
ting hyperplane. This model is followed by various SVR models
that appear in the literature for business and energy forecasting,
such as financial forecasting [27], electric load forecasting [28],
and hydropower production capacity prediction [29]. In general,
SVR models perform well when the training data points are
known [26]. However, for real-world applications, the datasets
inevitably involve possible contamination noise, measurement
errors, mislabeling, and even attacked data points, which may
significantly downgrade the performance of SVR. Several kernel-
based robust support vector regression (RSVR) models have been
proposed to achieve robust performance by considering the un-
certainties embedded in data points as stochastic noise. For in-
stance, Trafalis and Alwazzi [9] considered input data points with
normally distributed errors, whereas Abaszade and Effati [11]
considered the case of uniformly distributed errors. Shivaswamy
et al. [8] reduced the restrictive assumptions on the data distri-
bution by using only the means and covariance matrices of the
input data points in their RSVR model. When both the input and
output data are stochastically uncertain, Huang et al. [10] pro-
posed an RSVR model with a Gaussian kernel that requires only
the means and covariances of the data points. The RSVR model
demonstrated superior performance for some synthetic and real
datasets. However, as stated in [10], covariance information in the
feature space is required in any kernelized formulation of an RSVR
model. Although this information in the original space is readily
accessible, it cannot be obtained in the feature space because of
an unknown nonlinear transformation. Thus, Huang et al. [10]
used the estimated spectral norms of the covariance matrices in
the feature space, even though adopting the estimations reduces
forecasting accuracy.

The novel contribution of this paper is to propose a new robust

kernel-free nonlinear regression model based on the principle of

2

‘‘optimal margin distribution’’ and probabilistic constraints (in-
cluding covariance information) for datasets involving stochastic
uncertainties, without knowing the actual distributions of noise,
in an accurate and efficient manner. We note that the kernel-
free SVRs in [24,25] are based on the commonly used principle
of ‘‘maximal minimum margin’’. To enhance generalization ac-
curacy, we proposed a new kernel-free quadratic surface SVR
model based on the ‘‘optimal margin distribution’’ (QSSVR-OMD)
instead of the ‘‘maximal minimum margin’’ principle. Moreover,
for stochastically uncertain data, the use of a Gaussian kernel
limits the forecasting efficiency and accuracy of the robust SVR
models in [8,10] owing to the excessive computation require-
ment and inexact estimation of covariance matrices in the fea-
ture space. To address these challenges, we chose to build a
kernel-free SVR directly using the means and covariances of the
input–output data sets. For robust performance, probabilistic con-
straints were included in the proposed SVR for the worst situa-
tion. Specifically, a brand-new distributionally kernel-free robust
QSSVR (RQSSVR-OMD) model is proposed for stochastically un-
certain input–output data by incorporating covariance informa-
tion and probabilistic constraints into the QSSVR-OMD model. For
fast computation, the properties of the probabilistic constraints
were further studied to show an equivalent formulation of the
second-order cone (SOC) constraints. This allows the regression
analysis of the proposed RQSSVR-OMD model to be conducted in
an efficient manner. In addition, we will conduct extensive com-
putational experiments on public benchmark datasets to demon-
strate the superior performance of the proposed RQSSVR-OMD
model over other well-established SVR models. The proposed
model can also be applied to handle real-life uncertain battery
data for accurate battery power-consumption forecasting.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly reviews the related SVR models in the literature.
In Section 3, we construct a kernel-free QSSVR-OMD model and
describe its properties. Then, the proposed RQSSVR-OMDmodel is
introduced and investigated in Section 4. Section 5 describes the
computational experiments performed on public benchmark and
real-life datasets to validate the effectiveness and efficiency of
the proposed model compared with other well-established robust
SVR models. Finally, Section 6 concludes the paper.

2. Review of related support vector regression models

In this section, related classic SVR and RSVR models are briefly
reviewed. Further details can be found in [8,26], and [10].

Given a dataset of n points {(xi, yi)}ni=1, where xi = [xi1, x
i
2, . . . ,

i
m]

T
∈ Rm and yi ∈ R, the linear SVR model intends to determine

he parameters (w, b), w ∈ Rm, and b ∈ R of a hyperplane

(x, y) ≜ wTx + b − y = 0, (1)

hat fits the n data points while minimizing the regularization
erm ∥w∥

2 and the fitting errors of data points outside the tube
f (x, y)| ≤ δ for a given δ > 0. Hence, the linear SVR model with
inear constraints with respect to a given δ can be formulated as
ollows [26]:

min
1
2

∥w∥
2
2 + C1

n∑
i=1

ξi

s.t. δ + ξi ≥ wTxi + b − yi ≥ −δ − ξi, i = 1, . . . , n,

ξi ≥ 0, i = 1, . . . , n, (SVR)
w ∈ Rm, b ∈ R,

where C1 > 0 and δ > 0 are given parameters. For nonlinear
regression, a nonlinear kernel function φ(x) : Rm

→ Rd is first
applied to map the data points x from the original space Rm to a
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igher-dimensional feature space Rd (where m ≤ d and d could
e +∞), and then the SVR model is applied to the transformed
ata in the higher-dimensional feature space Rd. Hence, the SVR
odel with kernel φ(x) can be formulated as follows [26]:

min
1
2

∥v∥2
2 + C1

n∑
i=1

ξi

s.t. δ + ξi ≥ vTφ(xi) + b − yi ≥ −δ − ξi, i = 1, . . . , n,

ξi ≥ 0, i = 1, . . . , n, (SVR-ker)

v ∈ Rd, b ∈ R,

here C1 > 0 and δ > 0 are given parameters. In general,
t is difficult to identify a good kernel function φ(x) directly;
hus, the dual problem of the SVR-ker model, which involves
he preassigned expression of the kernel K (x, y) = φ(x)Tφ(y),
s always solved. Various kernels have been used in the litera-
ure, such as the Gaussian radial basis kernel [30], polynomial
ernel [31], and hyperbolic tangent kernel [32]. Notably, the
SVR-ker) model can be reformulated as a second-order cone
rogramming (SOCP) problem [8]; however, the performance of
SVR-ker) model depends significantly on the parameters of the
ernel.
Throughout this paper, both input and output data are as-

umed to be disturbed by noise, that is, the observations (xi, yi) ∈
m+1, i = 1, . . . , n, are random vectors. As in the setting in [10],
he expectation and covariance information for each observa-
ion are assumed to be known or can be estimated in advance.
he expectation and covariance matrices of each observation are
enoted by

¯
i ≜ E(xi), ȳi ≜ E(yi), (2)

and

Σ i
xx ≜ Cov(xi, xi), Σ i

yy ≜ Cov(yi, yi),
i
yx ≜ Cov(yi, xi), Σ i

xy ≜ Cov(xi, yi), (3)

espectively. Let qi ≜ [(xi)T , yi]T ∈ Rm+1, i = 1, . . . , n then, the
xpectation and covariance matrix of qi are

¯
i ≜ E([(xi)T , yi]T ) = [(x̄i)T , ȳi]T (4)

nd

i
qq ≜ Cov(qi, qi) =

[
Σ i

xx Σ i
xy

Σ i
yx Σ i

yy

]
, (5)

espectively. Let K̄ be an n × n Gaussian kernel matrix with
¯ij ≜ e−∥x̄i−x̄j∥2/(2σ2), and K̄i ≜ [K̄1i, K̄2i, . . . , K̄ni]

T be the ith
olumn of K̄ . We note that K̄ is real, symmetric, and positive
emi-definite; thus, K̄

1
2 exists without loss of generality. Huang

et al. [10] proposed a RSVR model with Gaussian kernel to handle
the uncertain input and output data as follows:

min t + C1

n∑
i=1

ϵi

s.t.
√

∥Σ̃ i
qq∥(θ

T K̄θ + 1) + (θT K̄i + b − ȳi)2 ≤ (δ + ϵi)
√

β,

i = 1, . . . , n,

∥K̄
1
2 θ∥2 ≤ t,

t, ϵi ≥ 0, i = 1, . . . , n,

θ ∈ Rn, b ∈ R, (RSVR-ker)

here C1 > 0, δ > 0 and β ∈ [0, 1] are the given parameters, and
˜ i
qq, i = 1, . . . , n, are the covariance matrices of uncertain points

n the feature space depending on the kernel used. However, Σ̃ i

qq t

3

annot be obtained, because the kernel function φ(x) is usually
nknown. To overcome this difficulty, Huang et al. [10] assumed
hat the input and output datasets are uncorrelated, that is, Σ i

xy =
i
yx = 0, where 0 is a vector whose elements are all zero, and
sed the spectral norm of Σ̃ i

qq in the aforementioned (RSVR-ker)
odel. Under this assumption, the spectral norm of Σ̃ i

qq for a
aussian kernel can be approximated as follows [10]:

Σ̃ i
qq∥ =

Σ̃ i
xx Σ̃ i

xy
Σ̃ i

yx Σ i
yy

 ≈

Σ̃ i
xx 0
0 Σ i

yy

 = max
{
∥Σ̃ i

xx∥, ∥Σ i
yy∥

}
= max

⎧⎨⎩
√

2
n
(1 − e−

m∥Σ i
xx∥2

2σ2 ), ∥Σ i
yy∥

⎫⎬⎭ ,

where Σ̃ i
xx, Σ̃ i

xy and Σ̃ i
yx are the covariance matrices of the un-

ertain points in the feature space, and Σ̃ i
xy = Σ̃ i

yx = 0 because
f the assumption that Σ i

xy = Σ i
yx = 0.

Notably, (n + 1) SOC constraints exist in the RSVR-ker model.
oreover, each of the first n SOC constraints has an (n + 2)-
imensional SOC and the last SOC constraint has an
-dimensional SOC. As we will observe in the numerical experi-
ent in Section 5.1, when the number of observations n is large,
olving the RSVR-ker model becomes computationally difficult.
his motivated us to develop a new robust SVR model with
ow-dimensional SOC constraints.

. Quadratic surface support vector regression based on opti-
al margin distribution

In this section, the quadratic surface SVR (QSSVR) model is
irst introduced by directly using a quadratic surface for non-
inear regression. Then, the QSSVR-OMD model is proposed by
ncorporating the objective of minimizing the variance of func-
ional margins into the QSSVR model. The proposed QSSVR-OMD
odel is further simplified, and the convexity of its optimization
roblem is proved.

.1. Quadratic Surface Support Vector Regression (QSSVR)

Given a dataset of n points {(xi, yi)}ni=1, the QSSVR model aims
o determine the parameters (W ,h, c) of a quadratic surface

(x, y) ≜
1
2
xTWx + hTx + c − y = 0, (6)

where W = W T
∈ Rm×m, h ∈ Rm, and c ∈ R, which fit n

data points without using any kernel. Similar to the definitions of
the various margins of points in [21], we develop the following
definitions of margins for this regression problem:

Definition 1. ζi ≜ |g(xi, yi)| is the functional margin at point
(xi, yi) with respect to g(x, y) = 0.

efinition 2. We assume that a positive (or negative) gradient
direction at point (xi, yi) with respect to g(x, y) = g(xi, yi)
ntercepts the quadratic surface g(x, y) = 0 at point (xB, yB). The
istance between points (xi, yi) and (xB, yB), denoted by ζ̂i, is the
eometrical margin at point (xi, yi) with respect to g(x, y) = 0.

efinition 3. For g(xi, yi) ≥ 0 (or ≤ 0), given δ > 0, the positive
or negative) gradient direction at point (xi, yi) with respect to
(x, y) = g(xi, yi) intercepts the surfaces g(x, y) = +δ (or −δ)
nd g(x, y) = 0 at points (xI , yI ) and (xB, yB), respectively. The
istance between points (xI , yI ) and (xB, yB), denoted by ζ̄i, is
alled the relative geometric margin at point (xi, yi) with respect

o g(x, y) = 0.



J. Luo, S.-C. Fang, Z. Deng et al. Knowledge-Based Systems 253 (2022) 109477

g

i
i
i
T
n
e
m
o
w
f

b

t
m
t
t
w
s
f
t

γ

w

1

M

Fig. 1. Demonstration of various margins with respect to a quadratic surface
g(x, y) = 0 in two dimension.

Fig. 1 illustrates the (xi, yi), (xI , yI ), (xB, yB), ζi, ζ̂i, and ζ̄i for
m = 1. Similar to the proof in [21], the geometrical margin ζ̂i
and the relative geometrical margin ζ̄i at point (xi, yi) can be
approximated by ζi

∥Wxi+h∥2
and δ

∥Wxi+h∥2
, respectively. Therefore,

with respect to the quadratic surface g(x, y) = 0, the relative
eometrical margins of different points are different in general.
Similar to the classic SVR models, the goal of the QSSVR model

s to generate one ‘‘tube’’ and then try to include as many points
n this ‘‘tube’’ as possible. Specifically, we first ignore the errors
n the data points inside the tube |g(x, y)| ≤ δ for a given δ > 0.
hen, to include as many data points in this tube as possible, we
ot only maximize the sum of the relative geometrical margin of
ach point with respect to g(x, y) = 0 (which can be approxi-
ated by minimizing

∑n
i=1 ∥Wxi + h∥

2
2 (refer to the formulation

f QSSVM in [21]), but also minimize the deviations of data points
ith errors greater than δ. Therefore, the QSSVR model can be

ormulated as follows:

min
n∑

i=1

∥Wxi + h∥
2
2 + C1

n∑
i=1

ϵi

s.t. δ + ϵi ≥
1
2
(xi)TWxi + hTxi + c − yi ≥ −δ − ϵi,

i = 1, . . . , n,
ϵi ≥ 0, i = 1, . . . , n,

W = W T
∈ Rm×m, h ∈ Rm, c ∈ R., (QSSVR)

where C1, δ > 0 are the given parameters. According to Defi-
nition 1, the functional margin of point (xi, yi) with respect to
g(x, y) = 0 is ζi = |

1
2 (x

i)TWxi + hTxi + c − yi|. From (QSSVR)
model, we can observe that ϵi = ζi − δ for point (xi, yi) is outside
the tube |g(x, y)| ≤ δ. Hence, minimizing

∑n
i=1 ϵi in the objective

of (QSSVR) model minimizes the mean of the functional margins
outside the tube |g(x, y)| ≤ δ. This is related to optimizing the
first-order information of the functional margins of points in OMD
theory [17].

3.2. Quadratic surface support vector regression based on optimal
margin distribution

Given a dataset of n points {(xi, yi)}ni=1, the QSSVR-OMD model
aims to find the parameters (W ,h, c) of a quadratic surface
g(x, y) ≜ 1

2x
TWx + hTx + c − y = 0 which fits n data points

y incorporating the optimal functional margin distribution into
4

he QSSVR model. Because the objective of QSSVR model is to
inimize the mean of the functional margins of points outside

he tube |g(x, y)| ≤ δ, an additional objective of QSSVR-OMD is
o minimize the variance of the functional margins of all points
ith respect to g(x, y) = 0. This is motivated by optimizing the
econd-order information (i.e., minimizing the variance) of the
unctional margins of the points in the OMD theory. We denote
he variance of the functional margins of all points by

≜
1
n

n∑
i=1

(ζi −
1
n

n∑
j=1

ζj)2 =
1
n2 ζ T (nIn − 1n)ζ ,

here ζ = [ζ1, ζ2, . . . , ζn]
T , ζi = |

1
2 (x

i)TWxi + hTxi + c − yi|
is the functional margin at point (xi, yi), In and 1n denotes the
n × n identity and n × n matrices, where each element is one,
respectively. Then, by incorporating the term minimizing γ into
the QSSVR model, we can formulate the QSSVR-OMD model as
follows:

min
n∑

i=1

∥Wxi + h∥
2
2 + C1

n∑
i=1

ϵi +
C2

n2 ζ T (nIn − 1n)ζ

s.t. δ + ϵi ≥
1
2
(xi)TWxi + hTxi + c − yi ≥ −δ − ϵi,

i = 1, . . . , n,

ζi ≥
1
2
(xi)TWxi + hTxi + c − yi ≥ −ζi, i = 1, . . . , n,

W = W T
∈ Rm×m, h ∈ Rm, c ∈ R,

ζi, ϵi ≥ 0, i = 1, . . . , n, (QSSVR-OMD)

where C1, C2, δ > 0 are given parameters. We note that the
second and last terms in the objective of (QSSVR-OMD) OMD
model are related to the first-order and second-order regression
errors of points outside the tube |g(x, y)| ≤ δ and all points,
respectively.

The matrix W is symmetric; hence, the QSSVR-OMD model
can be equivalently simplified as follows: First, let Φ be the
vector formulated by considering the m2

+m
2 elements of the upper

triangular part of matrix W , that is, Φ ≜ [w11, w12, . . . , w1m, w22,

w23, . . . , w2m, . . . , wmm]
T

∈ R
m2

+m
2 . Then, for i = 1, . . . , n, we can

construct an m ×
m2

+m
2 matrix Mi for point xi ∈ Rm as follows:

For the jth row of Mi, j = 1, 2, . . . ,m, if the pth element of Φ is
wjk or wkj for some k = 1, 2, . . . ,m, we assign the pth element
of the jth row of Mi to be xik. Alternatively, we assign it a value

of zero. Furthermore, let Hi ≜ [Mi, Im] ∈ Rm×(m
2
+m
2 +m), i =

, . . . , n, Q ≜
∑n

i=1 H
T
i Hi ∈ R

m2
+3m
2 ×

m2
+3m
2 , the vector of variables

z ≜ [ΦT ,hT
]
T

= [w11, . . . , w1m, w22, . . . , w2m, . . . , wmm,hT
]
T

∈

R
m2

+3m
2 . Then, the first term in the objective of (QSSVR-OMD)

OMD model becomes:
n∑

i=1

∥Wxi + h∥
2
2 =

n∑
i=1

∥Hiz∥2
2 =

n∑
i=1

(Hiz)T (Hiz)

=

n∑
i=1

zT (Hi)THiz = zT (
n∑

i=1

(Hi)THi)z = zTQz.

oreover, let si ≜ [
1
2x

i
1x

i
1, . . . , x

i
1x

i
m,

1
2x

i
2x

i
2, . . . , x

i
2x

i
m, . . . ,

1
2x

i
m−1x

i
m−1, x

i
m−1x

i
m,

1
2x

i
mx

i
m, xi1, x

i
2, . . . , x

i
m]

T
∈ R

m2
+3m
2 , the

QSSVR-OMD model can be equivalently reformulated as below:

min zTQz + C1

n∑
i=1

ϵi +
C2

n2 ζ T (nIn − 1n)ζ

s.t. δ + ϵ ≥ zT si + c − yi ≥ −δ − ϵ , i = 1, . . . , n,
i i
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Σ
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e

ζi ≥ zT si + c − yi ≥ −ζi, i = 1, . . . , n,

z ∈ R
m2

+3m
2 , c ∈ R,

ζi, ϵi ≥ 0, i = 1, . . . , n, (QSSVR-OMD′)

where C1, C2, δ > 0 are given parameters. Here, parameter C1
determines the trade-off between the relative geometrical mar-
gins of data points and the functional margins of data points
whose deviations are greater than δ, and parameter C2 deter-
mines the trade-off between the relative geometrical margins of
data points and the variance of the functional margins of data
points. Hence, the objective function of the QSSVR-OMD’ model
prevents overfitting by minimizing the first regularization term
and underfitting by minimizing the second and third terms of
the first-order and second-order fitting errors of the training
points, respectively. The proposed model is proven to be a convex
quadratic programming problem as follows:

Theorem 1. The QSSVR-OMD’ model is a convex quadratic pro-
gramming problem with linear constraints.

Proof. First, the matrix nIn − 1n is proved to be positive semi-
definite for any positive integer n. It is easy to verify that matrix
nIn − 1n is positive semi-definite when n = 1. For n ≥ 2,
we assume that the eigenvalue of matrix nIn − 1n is λ then,
det(nIn − 1n − λIn) = 0, that is,

det(nIn − 1n − λIn) =

⏐⏐⏐⏐⏐⏐⏐⏐
n − λ − 1 −1 · · · −1

−1 n − λ − 1 · · · −1
...

−1 −1 · · · n − λ − 1

⏐⏐⏐⏐⏐⏐⏐⏐
=

⏐⏐⏐⏐⏐⏐⏐⏐
−λ −λ · · · −λ

−1 n − λ − 1 · · · −1
...

−1 −1 · · · n − λ − 1

⏐⏐⏐⏐⏐⏐⏐⏐
=

⏐⏐⏐⏐⏐⏐⏐⏐
−λ −λ · · · −λ

0 n − λ · · · 0
...

0 0 · · · n − λ

⏐⏐⏐⏐⏐⏐⏐⏐
=(n − λ)n−1λ = 0

ence, matrix nIn − 1n has only two eigenvalues, 0 and n, which
hows that matrix nIn − 1n is positive semidefinite.
Then, for any x̃ ∈ R

m2
+3m
2 , x̃TQx̃ = x̃T (

∑n
i=1 H

T
i Hi)x̃ =

n
i=1 x̃

THT
i Hix̃ =

∑n
i=1 ∥Hix̃∥2

2 ≥ 0. Hence, the matrix Q is also
positive semi-definite.

Therefore, the objective of the QSSVR-OMD’ model is a convex
quadratic function because it is a nonnegative combination of
three convex quadratic functions. In summary, the QSSVR-OMD’
model is a convex quadratic programming problem with linear
constraints. □

Using this theorem, the QSSVR-OMD’ model can be solved
in polynomial time within any given accuracy by some well-
established interior-point solvers [33].

4. Robust QSSVR-OMD for uncertain input and output data

In this section, we first introduce the probabilistic constraints
to handle uncertain input and output data of any distribution,
and then describe the sufficient and necessary conditions for
these constraints. Finally, we propose a distributionally robust
QSSVR-OMD model based on these constraints and data covari-
ance matrices.
5

We assume that both input and output data are disturbed by
random noises. That is, the observations (xi, yi) ∈ Rm+1, i =

, . . . , n, are random vectors. Then, si and i = 1, . . . , n, are
also random vectors. Similar to Eqs. (2)–(5) in Section 2, the
expectation and covariance matrices of si and yi are denoted by

s̄i ≜ E(si), ȳi ≜ E(yi), (7)

nd
i
ss ≜ Cov(si, si), Σ i

yy ≜ Cov(yi, yi), (8)
i
sy ≜ Cov(si, yi), Σ i

ys ≜ Cov(yi, si), (9)

espectively. Let ui ≜ [(si)T , yi]T ∈ R
m2

+3m
2 +1, i = 1, . . . , n,

then, the random variables zT si + c − yi, i = 1, . . . , n, become
[zT , −1]ui

+ c. The expectation and covariance matrices of ui are:

ūi ≜ E([(si)T , yi]T ) = [(s̄i)T , ȳi]T , (10)

and

Σ i
uu ≜ Cov(ui,ui) =

[
Σ i

ss Σ i
sy

Σ i
ys Σ i

yy

]
, (11)

respectively. We denote ui
∼ (ūi, Σ i

uu) as a family of distributions
with expectation ūi and covariance matrix Σ i

uu. Subsequently, for
uncertain input and output data of any distribution, the proba-
bilistic constraints for the worst situation are defined as follows:

sup
ui∼(ūi,Σ i

uu)
Pr

{⏐⏐[zT , −1]ui
+ c

⏐⏐ ≥ δ + ϵi
}

≤ β, i = 1, . . . , n, (12)

where Pr{A} is the probability of an event A, δ > 0 and 0 < β ≤ 1
are constants, and ϵi ≥ 0 is a slack variable that will be penalized
for large values in the objective. Clearly, small values of ϵi and
β yield observed prediction errors close to zero. To develop a
distributionally robust QSSVR-OMD model, we incorporate the
probabilistic constraints (12) into the QSSVR-OMD model and
replace the random vectors xi,ui with their expectations x̄i, ūi

in other constraints and the objective function. This provides the
following formulation for a distributionally robust QSSVR-OMD:

min zT Q̄z + C1

n∑
i=1

ϵi +
C2

n2 ζ T (nIn − 1n)ζ

s.t. sup
ui∼(ūi,Σ i

uu)
Pr

{⏐⏐[zT , −1]ui
+ c

⏐⏐ ≥ δ + ϵi
}

≤ β, i = 1, . . . , n,

ζi ≥ [zT , −1]ūi
+ c ≥ −ζi, i = 1, . . . , n,

z ∈ R
m2

+3m
2 , c ∈ R,

ζi, ϵi ≥ 0, i = 1, . . . , n, (RQSSVR-OMD)

where C1, C2, δ > 0 and β ∈ [0, 1] are the given parameters, and
Q̄ is generated by replacing the random vector xi in Q with its
xpectation x̄i for i = 1, . . . , n. It can be easily verified that Q̄

remains positive semidefinite. However, this model is difficult to
solve owing to probabilistic constraints. To implement this model
efficiently, we study the sufficient and necessary conditions for
(12) in the next theorem.

Theorem 2. Let z ∈ R
m2

+3m
2 , c ∈ R, and s̄i, ȳi, Σ i

uu be defined in
(7) and (11); then, the sufficient and necessary conditions for (12)
are√

[zT , −1]Σ i
uu[zT , −1]T + ([zT , −1]ūi + c)2 ≤ (δ + ϵi)

√
β,

i = 1, . . . , n. (13)
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roof. The proof consists of two parts: First, we prove that

sup
u∼(ūi,Σ i

uu)
Pr

{⏐⏐[zT , −1]ui
+ c

⏐⏐ ≥ δ + ϵi
}

=
E[([zT , −1]ui

+ c)2]
(δ + ϵi)2

, i = 1, . . . , n. (14)

urthermore, using the Chebyshev inequality, we have that

Pr
{⏐⏐[zT , −1]ui

+ c
⏐⏐ ≥ δ + ϵi

}
≤

E[([zT , −1]ui
+ c)2]

(δ + ϵi)2
, i = 1, . . . , n. (15)

e assume that each random variable [zT , −1]ui
+c , i = 1, . . . , n,

s discretely distributed, considering the values −δ − ϵi with
robability p1, 0 with probability p2, and δ + εi with probability
− p1 − p2. That is

zT , −1]ui
+ c ∼

(
−δ − ϵi 0 δ + ϵi

p1 p2 1 − p1 − p2

)
. (16)

hen, Pr
{⏐⏐[zT , −1]ui

+ c
⏐⏐ ≥ δ + ϵi

}
= p1 + 1 − p1 − p2 = 1 − p2

nd

E[([zT , −1]ui
+ c)2]

(δ + ϵi)2
=

p1(−δ − ϵi)2 + (1 − p1 − p2)(δ + ϵi)2

(δ + ϵi)2

= 1 − p2, i = 1, . . . , n.

Hence, a specific distribution (16) is found, such that the equality
in (15) holds. This indicates that (14) is true.

Second, we prove that

E[([zT , −1]ui
+ c)2] = [zT , −1]Σ i

uu[z
T , −1]T + ([zT , −1]ūi

+ c)2.

(17)

o observe this, we note that

E[([zT , −1]ui
+ c)2]

= E[([zT , −1]ui)2 − ([zT , −1]ūi)2] + ([zT , −1]ūi
+ c)2

= [zT , −1]Σ i
uu[z

T , −1]T + ([zT , −1]ūi
+ c)2,

here the last equality follows from the definition of covariance
atrix Σ i

uu. Substituting (14) and (17) into (12) and calculat-
ng the square root on both sides yields inequality (13) in the
tatement. □

Theorem 2 shows that probabilistic constraints (12) can be
quivalently reformulated as SOC constraints (13). Then, for un-
ertain input and output data of any distribution with given
xpectations and covariance matrices, the distributionally robust
SSVR-OMD model can be formulated as follows:

in zT Q̄z + C1

n∑
i=1

ϵi +
C2

n2 ζ T (nIn − 1n)ζ

s.t.
√

[zT , −1]Σ i
uu[zT , −1]T + ([zT , −1]ūi + c)2 ≤ (δ + ϵi)

√
β,

i = 1, . . . , n,

ζi ≥ [zT , −1]ūi
+ c ≥ −ζi, i = 1, . . . , n,

z ∈ R
m2

+3m
2 , c ∈ R,

ζi ≥ 0, ϵi ≥ 0, i = 1, . . . , n, (RQSSVR-OMD)

here C1, C2, δ > 0 and β ∈ [0, 1] are the given parameters. This
odel is a convex SOCP problem; thus, it can be efficiently solved
sing convex programming solvers.
6

Table 1
Information of tested data sets.
Data set # of points # of dimensions

slump 103 8
autoprice 159 15
machine 209 7
forestfire 270 9
mpg 392 8
housing 506 14
abalone 4177 9
Parkspe 1040 27
traffic 2101 48
SML 4137 19
super 5315 51

5. Computational experiments

Some public benchmark datasets were utilized to investi-
gate the performance of the proposed RQSSVR-OMD model. The
proposed model was then applied to battery power consump-
tion forecasting with real-life uncertain data. For fair compar-
isons, the SVR model with Gaussian kernel (denoted by ‘‘SVR-
Gker’’), the SVR model with quadratic kernel (denoted by ‘‘SVR-
Qker’’), the robust SVR model with Gaussian kernel proposed
by Shivaswamy et al. [8] (denoted by ‘‘RSVR-Gker_S’’), the robust
SVR model with Gaussian kernel proposed by Huang et al. [10]
(denoted by ‘‘RSVR-Gker_H’’), and the cutting-edge kernel-free
soft QSSVR proposed by Ye et al. [25] (denoted by ‘‘SQSSVR’’)
were also tested using the same data sets. For all the methods
tested in this study, the same 10-fold cross-validation and grid
methods were used to select the best parameters of C1, C2, β ,
δ, and the Gaussian kernel parameter σ 2 from the ranges of
log2 C1 ∈ {3, 4, . . . , 28, 29}, log2 C2 ∈ {0, 1, . . . , 13, 14}, β ∈

{0.1, 0.2, . . . , 0.8, 0.9}, log2 δ ∈ {−5, −4, . . . , 3, 4}, and log2
1

2σ2
∈ {−15, −14, . . . , 4, 5}, respectively. Notably, the variation in β

does not affect the forecasting accuracy of the proposed RQSSVR-
OMD model for all computational experiments in this section.
All numerical tests in this study were performed using MATLAB
(R2019a) software on a desktop equipped with an Intel Xeon
processor, 2.99 GHz CPU, 32 GB of RAM, and Microsoft Windows
10 Enterprise. The SVR model with Gaussian or quadratic kernel is
implemented using the ‘‘fitrsvm’’ and ‘‘predict’’ modules of MAT-
LAB, the SQSSVR model is implemented using the ‘‘quadprog’’
module of MATLAB, whereas the RSVR-Gker_S, RSVR-Gker_H
and RQSSVR-OMD models are implemented using the ‘‘sedumi’’
module of CVX MATLAB toolbox [33].

5.1. Numerical experiments on public benchmark data sets

For computational tests, 11 public benchmark datasets were
obtained from the UCI machine learning repository [34]. The
information of all tested data sets is summarized in Table 1. We
note that because a few noise points exist in these public bench-
mark datasets, 50 Gaussian distributed noise with a zero mean
and 0.01 standard deviation are added to each dimension of every
input and output point in each dataset to generate 50 disturbed
points, similar to the computational procedures in [11]. Hence,
the actual number of points used in the tested datasets ranged
from 5150 to 265,750. In addition, the covariance matrix of every
uncertain point utilized in the RSVR-Gker_S, RSVR-Gker_H, and
proposed RQSSVR-OMD models was calculated from the gener-
ated 50 disturbed points, similar to the computational procedure
in [10].

To obtain statistically meaningful results, we conducted ten
tests for each public benchmark dataset. In each test, we ran-
domly selected k% of the total points as the training dataset.
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Table 2
Forecasting errors of tested models on benchmark data.
Data set SVR-Gker SVR-Qker RSVR-Gker_S RSVR-Gker_H SQSSVR RQSSVR-OMD

MAPE ER MAPE ER MAPE ER MAPE ER MAPE ER MAPE ER

slump 18.79% 12.69 18.74% 12.68 7.20% 4.70 6.46% 4.21 7.36% 4.50 1.30% 0.47
autoprice 32.22% 4111 40.66% 4407 15.62% 2084 15.14% 2056 18.88% 2069 12.44% 1605
machine 120.64% 76.40 228.83% 111.94 48.72% 42.51 48.59% 42.02 49.16% 45.83 40.75% 32.19
forestfire 585.82% 29.87 977.72% 28.60 316.48% 22.52 302.77% 22.24 217.27% 23.15 196.23% 22.26
forestfire_1 656.36% 31.23 1544.72% 29.53 387.36% 23.86 337.10% 22.65 1004.94% 37.40 224.01% 22.41
mpg 12.63% 3.42 24.05% 15.23 11.36% 2.94 10.64% 2.91 10.87% 2.93 8.31% 1.96
mpg_1 26.60% 10.80 50.31% 17.40 24.59% 6.79 24.17% 6.75 25.73% 7.77 8.47% 1.98
housing 19.55% 4.26 39.36% 12.16 15.98% 4.22 15.55% 4.11 16.24% 3.91 11.35% 2.30
housing_1 39.88% 10.59 42.91% 11.03 32.78% 6.65 32.33% 6.62 62.59% 21.39 13.92% 3.78
abalone 14.96% 1.62 26.35% 6.19 14.47% 1.58 14.36% 1.57 14.51% 1.56 14.23% 1.53
abalone_1 27.25% 4.62 69.67% 8.92 26.18% 2.62 25.95% 2.61 112.00% 16.99 22.74% 2.59
Parkspe 370.24% 12.27 339.41% 11.15 315.24% 11.89 311.13% 11.77 576.11% 13.86 184.18% 10.21
traffic 30.30% 0.04 64.42% 0.07 102.16% 0.11 99.87% 0.10 110.89% 0.08 18.66% 0.02
SML 10.27% 6.56 10.42% 31.78 9.92% 2.15 9.90% 2.10 0.84% 0.17 0.79% 0.16
super 1147.35% 36.49 1269.64% 37.34 776.16% 34.06 758.28% 33.98 657.35% 33.93 124.86% 33.34
Table 3
Diebold–Mariano test.
Data set SVR-Gker SVR-Qker RSVR-Gker_S RSVR-Gker_H SQSSVR

DM of MAPEs DM of ERs DM of MAPEs DM of ERs DM of MAPEs DM of ERs DM of MAPEs DM of ERs DM of MAPEs DM of ERs

slump −6.56∗∗∗
−27.66∗∗∗

−6.60∗∗∗
−27.56∗∗∗

−5.18∗∗∗
−12.40∗∗∗

−4.17∗∗
−12.81∗∗∗

−5.62∗∗∗
−11.96∗∗∗

autoprice −5.84∗∗∗
−6.07∗∗∗

−6.76∗∗∗
−6.91∗∗∗

−3.48∗∗
−3.94∗∗

−3.30∗∗
−2.28∗

−4.26∗∗
−2.87∗

machine −3.82∗∗
−3.26∗∗

−8.66∗∗∗
−8.52∗∗∗

−2.99∗
−2.73∗

−2.76∗
−2.58∗

−3.15∗
−3.18∗

forestfire −4.41∗∗
−2.38∗

−5.16∗∗
−3.04∗

−2.62∗
−0.32 −2.37∗

−0.16 −1.07 −2.31∗

forestfire_1 −3.52∗∗
−3.72∗∗

−3.60∗∗
−2.91∗

−2.51∗
−0.92 −2.29∗

−0.55 −3.96∗∗
−3.77∗∗

mpg −6.63∗∗∗
−8.56∗∗∗

−11.62∗∗∗
−15.27∗∗∗

−4.53∗∗
−9.93∗∗∗

−4.31∗∗
−9.80∗∗∗

−4.39∗∗
−9.83∗∗∗

mpg_1 −12.88∗∗∗
−16.52∗∗∗

−15.36∗∗∗
−23.35∗∗∗

−13.69∗∗∗
−20.18∗∗∗

−13.73∗∗∗
−19.81∗∗∗

−13.65∗∗∗
−20.98∗∗∗

housing −9.21∗∗∗
−5.66∗∗∗

−17.63∗∗∗
−13.38∗∗∗

−8.16∗∗∗
−7.89∗∗∗

−8.00∗∗∗
−7.61∗∗∗

−19.23∗∗∗
−18.38∗∗∗

housing_1 −18.53∗∗∗
−12.62∗∗∗

−18.91∗∗∗
−13.89∗∗∗

−9.68∗∗∗
−9.09∗∗∗

−9.58∗∗∗
−8.80∗∗∗

−20.19∗∗∗
−19.48∗∗∗

abalone −3.07∗
−4.01∗∗

−29.56∗∗∗
−16.78∗∗∗

−2.75∗
−3.62∗∗

−2.31∗
−3.37∗∗

−2.98∗
−3.88∗∗

abalone_1 −33.86∗∗∗
−6.05∗∗∗

−36.78∗∗∗
−23.67∗∗∗

−6.63∗∗∗
−4.66∗∗

−6.26∗∗∗
−2.74∗

−24.65∗∗∗
−41.33∗∗∗

Parkspe −8.16∗∗∗
−8.05∗∗∗

−8.59∗∗∗
−4.58∗∗

−5.98∗∗∗
−19.93∗∗∗

−5.94∗∗∗
−19.89∗∗∗

−8.73∗∗∗
−6.17∗∗

traffic −2.74∗
−6.60∗∗∗

−2.96∗
−6.98∗∗∗

−5.12∗∗∗
−47.87∗∗∗

−5.07∗∗∗
−46.63∗∗∗

−4.03∗∗∗
−77.09∗∗∗

SML −12.91∗∗∗
−4.35∗∗

−13.62∗∗∗
−8.95∗∗∗

−6.29∗∗∗
−7.21∗∗∗

−6.22∗∗∗
−7.16∗∗∗

−2.46∗
−2.87∗

super −6.26∗∗∗
−7.37∗∗∗

−6.72∗∗∗
−7.69∗∗∗

−3.47∗
−5.86∗∗∗

−3.45∗
−5.81∗∗∗

−2.28∗
−5.06∗∗∗
f

The SVR-Gker, SVR-Qker, RSVR-Gker_S, RSVR-Gker_H, SQSSVR,
and RQSSVR-OMD models were then trained using the selected
training dataset to generate the parameters of the corresponding
regressors. Then these regressors were used to predict the output
of the remaining 1 − k% points in the dataset, and the forecast-
ng errors were calculated. Following a computational procedure
imilar to that in [8,10], k was set to 90 for fair comparisons.
We note that, for k being 90, the ratio of the number of training
points to that of forecasting points is the same as that of ten-
fold cross-validation [12,25,35], which is a common practice in
the field of machine learning. For each model, the average of the
mean absolute percentage errors (MAPE) and expected residuals
(ER) (defined in [10]) is reported in Table 2. Smaller MAPE and
ER values indicate that the corresponding model produces more
accurate and robust forecasts. For the four public benchmark data
sets: ‘‘forestfire’’, ‘‘mpg’’, ‘‘housing’’, and ‘‘abalone’’, the Gaussian
distributed noise with zero mean and one standard deviation is
added to each dimension to generate the data sets ‘‘forestfire_1’’,
‘‘mpg_1’’, ‘‘housing_1’’, and ‘‘abalone_1’’, respectively, as shown in
Table 2. The aim of this study is to investigate the performance
of all tested models on datasets with noise of a relatively larger
magnitude. The Diebold–Mariano statistical test was performed
between MAPEs (or ERs) of the proposed method and those of ev-
ery tested method, with the statistical differences being recorded
in Table 3. Table 3 shows DM statistics with ∗∗∗ denoting the
-value <0.001, ∗∗ denoting the p-value <0.01, and ∗ denoting
he p-value <0.05, which means that the statistical difference
etween MAPEs (or ERs) of the proposed model and those of the
enchmark model is at a significance level of less than 0.001,
.01, and 0.05, respectively. Moreover, the average computational
imes of all tested models are reported in Table 4.
7

From the numerical results listed in Tables 2–4, we obtain the
ollowing observations:

• From Table 3, the statistical difference between MAPEs (or
ERs) of the proposed model and those of each tested SVR
model is at a significant level of less than 0.05 for most cases.

• For most computational experiments on tested data sets,
the proposed RQSSVR-OMD model performs best in accu-
racy, whereas the SVR-Gker, SVR-Qker, and SQSSVR models
perform worst. The RSVR-Gker_S and RSVR-Gker_H mod-
els tie for the middle position. There are three possible
reasons for this result. First, the RQSSVR-OMD and RSVR
models utilize the information of full covariance matrices
of quadratic forms and approximated spectral norms of co-
variance matrices in the feature space, respectively, whereas
the information of covariance matrices is not considered
in the SVR-Gker, SVR-Qker, and SQSSVR models. Hence,
the RQSSVR-OMD and RSVR models produce more accu-
rate forecasts than the SVR-Gker, SVR-Qker, and SQSSVR
models for these uncertain data sets with noise. Second,
optimizing the functional margin distribution (particularly
minimizing the variance of functional margins) in the pro-
posed RQSSVR-OMD model contributes to improving the
forecasting accuracy. Hence, the kernel-free RQSSVR-OMD
model yields more accurate forecasts than the kernel-free
SQSSVR model, particularly for the data sets with a small
magnitude of noise. Third, the two RSVR models assume that
the uncertain input data is uncorrelated with the uncertain
output data (i.e., Σ i

xy = Σ i
yx = 0) and then the estimated

spectral norms of covariance matrices is adopted, although a
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Table 4
Average computational time (in seconds) of tested models on benchmark data.
Data set SVR-Gker SVR-Qker RSVR-Gker_S RSVR-Gker_H SQSSVR RQSSVR-OMD

slump 0.15 9.76 0.54 0.58 0.24 0.33
autoprice 0.68 28.72 1.36 1.43 0.96 0.67
machine 1.52 2.93 2.47 2.96 1.62 1.30
forestfire 2.51 37.63 7.29 7.39 2.77 1.39
forestfire_1 5.33 39.73 7.40 7.49 6.67 1.33
mpg 5.96 10.31 35.47 36.22 6.54 3.58
mpg_1 10.63 28.31 36.09 36.55 12.33 3.62
housing 17.80 48.66 77.47 20.64 25.77 8.19
housing_1 20.39 56.73 77.81 78.19 24.84 8.37
abalone 261.06 2433.13 2 496.19 2 878.56 353.94 249.95
abalone_1 280.57 2542.67 2 620.96 2 993.72 384.10 257.97
Parkspe 118.90 122.65 2 894.36 2 793.75 261.40 113.62
traffic 136.65 283.65 3 623.38 3 980.75 2931.47 1537.35
SML 1523.80 3757.75 12 633.18 12 954.05 5180.50 1221.75
super 2399.25 5256.60 17 251.64 17 562.80 7030.20 2603.25
correlation between the uncertain input and output data al-
ways exist, the inexact estimation of covariance matrices for
uncertain points reduces the forecasting accuracy of RSVR
models. The RQSSVR-OMD model has no such restricted
assumptions, and the covariance matrices of quadratic forms
for uncertain points can be exactly obtained. Hence, the
RQSSVR-OMD model outperforms the RSVR models in terms
of forecasting accuracy.

• From Table 2, as the magnitude of noise in the benchmark
data sets (i.e., ‘‘forestfire’’, ‘‘mpg’’, ‘‘housing’’, and ‘‘abalone’’)
increases, the superiority of the proposed RQSSVR-OMD
model becomes more evident. This observation indicates
that the RQSSVR-OMD model is much more robust than the
other five tested SVR models. The main reason is that the
SOC constraints in the RQSSVR-OMD model are equivalently
reformulated from probabilistic constraints, which directly
use the exact information of means and covariance matrices
of the input–output uncertain data sets.

• From Table 4, the required computational time of the SVR-
Gker and RQSSVR-OMD models is comparable, whereas the
two state-of-the-art RSVR models are much less computa-
tionally efficient. The main reason is that, the dimensionality
of the SOC constraints in the RQSSVR-OMD model is much
less than that of each tested RSVR model for these data
sets, whereas the number of SOC constraints in the RQSSVR-
OMD is one fewer than that in each tested RSVR model.
For the non-commercial SOCP solver used in our experi-
ments, the number and dimensionality of SOC constraints
primarily impact the computational time of solving the SOCP
reformulations of tested RQSSVR-OMD and RSVR models.

5.2. Application to battery power consumption forecasting

The proposed model was applied to a real-life problem to pre-
ict battery power consumption. In this subsection, we first de-
cribe the battery condition data and the prepossessing procedure
nd then show the comparison results between the proposed
odel and other tested SVR models.
Data-driven modeling is a promising route for the diagnostics

nd prognostics of lithium-ion batteries and enables emerging
pplications in the development, manufacturing, and optimiza-
ion of lithium-ion batteries [36]. The accurate prediction of bat-
ery power consumption using early cycle data may open new
venues in battery production, use, fault detection, repair, and
ptimization. The real-life battery condition data used in this
tudy were collected from the batteries in unmanned vehicles
n a large unmanned warehouse operated by a Chinese corpora-
ion. In this dataset, there are 15,058 data points of 16 features
egarding the working and charging conditions of 339 batteries.
8

The features include battery usage time, average current, battery
fluctuation, charging time, business working time, system mode
time, number of charging procedures, number of business tasks
and errors, average vehicle traveling distance, and battery power
consumption.

Moreover, to reflect real-life circumstances, all nominal vari-
ables without the logic connection were transferred into one
or several categories accordingly, and then one dummy vari-
able for each category was utilized to represent the specific
state of the related battery (i.e., one indicates yes and zero in-
dicates no). For nominal variables with logic or ranking connec-
tions, each category was transformed into an integer according
to the logic or ranking connection. For the preprocessed data
points {xi, i = 1, . . . , n} with all numerical features, where xi =

[xi1, x
i
2, . . . , x

i
m]

T
∈ Rm, all input features are z-scored to prevent

the dominance of input features with greater numerical values
than those with smaller values, that is,

xij =
xij − ρj
√

υj
, i = 1, . . . , n, j = 1, . . . ,m,

where ρj and υj are the mean and variance of {xij, i = 1, . . . , n},
respectively. In general, there are many fluctuations, errors, and
noise in the measurements of battery conditions, and the working
and charging conditions of the battery are stochastically uncer-
tain. Hence, for each battery, we collected the corresponding
battery condition data points from 15,058 data points and consid-
ered them as uncertain data points, from which the expectation
and covariance matrix were calculated for this battery. In this
manner, we generated a new dataset including 339 uncertain
points of 16 features.

The proposed RQSSVR-OMD model was applied to battery
power consumption forecasting by testing it on a new real-life
uncertain battery dataset. For fair comparisons, well-established
SVR models (including the SVR-Gker, SVR-Qker, RSVR-Gker_S,
SQSSVR, and RSVR-Gker_H models) were also tested on the same
battery dataset, following the experimental settings described at
the start of Section 5. Following the same experimental proce-
dures as described in Section 5.1, the average forecasting error
(i.e., MAPE) and computational time (i.e., CPU time) of all the
tested methods are listed in Table 5. The Diebold–Mariano statis-
tics between MAPEs of the proposed method and those of every
tested method are also recorded in Table 5. In contrast to tests
on synthetic and public benchmark data, the covariance matrices
utilized in the RSVR and RQSSVR-OMD models for this battery
data were calculated from the real-life uncertain 15,058 points.

From Table 5, in addition to the similar observations in the
previous subsection, we observe that the average forecasting
error (i.e., MAPE) of the proposed RQSSVR-OMD model is reduced
by at least 85% when compared to the well-established SVR and
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Table 5
Numerical results of tested methods on battery data.
Method MAPE (%) CPU time (s) DM of MAPEs

SVR-Gker 87.91 17.38 −10.93∗∗∗

SVR-Qker 95.00 99.81 −11.77∗∗∗

RSVR-Gker_S 87.30 364.56 −10.46∗∗∗

RSVR-Gker_H 84.95 386.36 −10.17∗∗∗

SQSSVR 86.22 123.93 −10.64∗∗∗

RQSSVR-OMD 12.15 85.68 N/A

RSVR models, as it requires less than one-fourth of the CPU
time of the RSVR models. For real-life uncertain battery data,
the assumption adopted by RSVR models (i.e., Σ i

xy = Σ i
yx = 0)

may be violated such that the two RSVR models do not perform
well. Hence, for this uncertain battery data, the three features
of the kernel-free quadratic surface, OMD, and full information
of noise covariances dominate the performance of the proposed
model in terms of forecasting accuracy. Moreover, because all the
input features of the uncertain battery dataset are scaled into
their z-scores, the mathematical expression of the optimal fitting
quadratic surface 1

2x
TW ∗x + h∗Tx + c∗

= y can be obtained
fter solving the RQSSVR-OMD model. The coefficients (W ∗,h∗)
f the optimal quadratic surface indicate that variables as well
s the interactions between them play a key role in predicting
eal-life battery power consumption. The accurate forecasting
esults of the proposed RQSSVR-OMD model also increase the
nterpretability of the obtained regressor.

. Conclusions

In this study, we proposed a new support vector regression
odel, named RQSSVR-OMD, which can robustly conduct a non-

inear regression analysis for datasets involving stochastic uncer-
ainties, without knowing the actual distributions of noise, in an
ccurate and efficient manner. The proposed method presents
everal good features: (i) it is kernel-free for saving tuning ef-
orts; (ii) it adopts the idea of optimal margin distribution to
nhance the generalization accuracy; (iii) it fully utilizes the co-
ariance information of stochastically uncertain data points with-
ut knowing their actual distributions for robust performance;
nd (iv) it converts probabilistic constraints to second-order cone
onstraints for fast computation.
Extensive computational experiments were conducted using

ublic benchmark datasets. The results clearly show that the
roposed model outperforms the commonly used SVR model
ith a Gaussian kernel (SVR-Gker) or quadratic kernel (SVR-Qker)
nd SQSSVR models in terms of accuracy and the other two state-
f-the-art robust SVR models (RSVR-Gker_S and RSVR-Gker_H)
n terms of both accuracy and computational time. In particular,
he successful application of the proposed model to a real-life
ncertain battery dataset has demonstrated its effectiveness and
fficiency in battery power consumption forecasting. This re-
ult indicates the potential of RQSSVR-OMD to address robust
orecasting problems in the real world.

The proposed RQSSVR-OMD model provides details about fu-
ure research directions. We are currently interested in exploring
his new model for other uncertain sets (such as those using the
asserstein metric [37]), robust multiclass classification [6], and

lustering analysis [38].
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