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In this paper, we propose a kernel-free semi-supervised quadratic surface support vector machine model for binary
classification. The model is formulated as a mixed-integer programming problem, which is equivalent to a non-
convex optimization problem with absolute-value constraints. Using the relaxation techniques, we derive a semi-
definite programming problem for semi-supervised learning. By solving this problem, the proposed model is tested
on some artificial and public benchmark data sets. Preliminary computational results indicate that the proposed
method outperforms some existing well-known methods for solving semi-supervised support vector machine with
a Gaussian kernel in terms of classification accuracy.
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1. Introduction

Classification is an important task for extracting informa-
tion from data with real-life applications (Li and Hand,
2002; Schebesch and Stecking, 2005; Boylan et al, 2008).
Support vector machine (SVM), using the maximal margin
approach to deal with binary classification, was provided in
details by Vapnik in 1995 (Cortes and Vapnik, 1995). SVM
aims to find an optimal hyperplane that separates the
labelled data points into two classes. It was the first touch
for many optimization researchers on machine learning.
SVMs have been successfully applied in many fields such
as face detection (Osuna et al, 1997), time series forecasting
(Hansen et al, 2006), financial distress prediction (Sun et al,
2014) and credit scoring (Baesens et al, 2003; Schebesch
and Stecking, 2005; Lessmann et al, 2015). In these
applications, we often face the issue of lacking labelled
data since it is labour-intensive and time-consuming to label
all data points, while a large number of unlabelled data
points can be obtained relatively easily. Moreover, the
unlabelled points may reduce the bias of the classifier when
compared with the case with only labelled points. Take one
application of semi-supervised learning in credit scoring as
an example, instead of building a model on only the
accepted applicants (labelled data), reject inference is used
to infer the status of applicants who have been rejected

(unlabelled data) (Maldonado and Paredes, 2010; Kennedy
et al, 2012). Consequently, transductive SVM (Vapnik and
Sterin, 1977; Joachims, 1999), was first proposed by treating
the unknown data labels as additional optimization variables
in SVM so that the labels of unknown data can be derived
directly, and implemented in text classification. For semi-
supervised learning, semi-supervised support vector machine
(S3VM) (Bennett and Demiriz, 1999; Chapelle et al, 2008)
was further proposed to learn an inductive rule from the
partially labelled data set, which is to output a prediction
function that is defined over the entire input space. Since
transductive SVM can also learn an inductive rule, we refer to
this approach as S3VM in this paper.
The main idea of S3VM is to maximize the margin between

two classes in the presence of unlabelled data, by keeping the
boundary traversing through low-density regions while respect-
ing labels in the input space (Chapelle et al, 2008). This leads to a
non-convex optimization problem, which causes computational
difficulty. Recently, several optimization methods have been
developed for solving non-convex optimization problems asso-
ciated with S3VM, such as S3VMlight (Joachims, 1999), branch-
and-bound algorithm (Bennett and Demiriz, 1999), semi-definite
relaxation (De Bie and Cristianini, 2004; Xu and Schuurmans,
2005; Valizadegan and Jin, 2006; Xu et al, 2008; Bai et al, 2012,
2013; Bai and Yan, 2015), deterministic annealing (Sindhwani
et al, 2006), convex–concave procedures (CCCP) (Collobert
et al, 2006), low-density separation (LDS) (Chapelle and Zien,
2005) and cutting plane S3VM (CutS3VM) (Zhao et al, 2008).
Among these methods, semi-definite relaxation is in general
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efficient for solving S3VM. It may produce some approximate
global solutions from any initial solution.
For the non-linearly separable data sets, a kernel function

(Deng et al, 2012) is commonly used to map each training data
point from the original space to a higher dimensional space,
where a hyperplane is then sought to separate all mapped data
points into two classes. There is no universal rule to automati-
cally choose a suitable kernel function for a given data set and
the parameters in the kernel function influence greatly the
performance of S3VM. Moreover, for the effective usage of a
kernel function, people often solve the dual problem of S3VM,
which requires the computation of the inverse of a kernel matrix
(Valizadegan and Jin, 2006; Xu et al, 2008; Bai et al, 2013).
Since the kernel matrix in general is only positive semi-definite
(Cristianini and Shawe-Taylor, 2000), a small positive scalar
needs be added to each diagonal element to deal with the
singular case. This leads to an approximate solution to the
S3VM model. When the primal problem of S3VM is handled,
one needs to approximate the mapping function by decompos-
ing its kernel matrix. This again leads to an approximate
solution of the S3VM model.
To overcome potential difficulties caused by using kernel

functions, we propose a kernel-free non-linear S3VMmodel for
semi-supervised classification, based on the quadratic surface
support vector machine (QSSVM) suggested in Luo et al
(2014) for binary classification directly using a quadratic
surface for separation. The QSSVM model was originally
proposed and tested to provide more accurate classification for
labelled data sets than using other SVM models (Issam, 2008;
Deng et al, 2012). Luo et al (2016) further proposed a fuzzy
QSSVM model based on Fisher discriminant analysis to deal
with data sets containing a large amount of outliers and noise.
The proposed semi-supervised quadratic surface support

vector machine (SSQSSVM) model is formulated as a mixed-
integer programming problem, which can be converted to a
non-convex optimization problem with absolute-value con-
straints. Since the underlying problem is NP-hard, we relax
each of the above two problems into a semi-definite program-
ming problem using some relaxation techniques. By analysing
the relationship between the two relaxation problems, we found
that they are equivalent if the rank-1 condition is satisfied in
both relaxed problems. Compared with the first relaxation, the
second one has fewer variables; hence, we adopt the second
relaxation for the proposed SSQSSVM model. The SSQSSVM
model is tested for performance based on some artificial and
public benchmark data sets. Numerical results show that the
proposed approach outperforms some existing methods in terms
of classification accuracy. This indicates that the proposed
SSQSSVM model could be more effective than the kernel-
based S3VM model.
The rest of the paper is arranged as follows. Section 2

provides a review of the QSSVM model. In Section 3 we
propose the SSQSSVM model and its equivalent optimization
problem. In Section 4, two semi-definite relaxations are pro-
posed, and the relationship between these two problems is

analysed. Computational experiments are conducted on some
artificial data sets and public benchmark data sets to inves-
tigate the performance of the proposed SSQSSVM model in
Section 5. Some concluding remarks are provided in Section 6.
In this paper, R denotes the set of real numbers, Rn the n-

dimensional Euclidean space, Rn ´ n the space of n× n-dimen-
sional matrices and Sn the space of n× n-dimensional sym-
metric matrices. For a given matrix A, A⪰ 0 means that A is
positive semi-definite. For A;B 2 Sn; A•B = trace(ATB)
denotes the inner product of matrices A and B. Moreover, en
denotes an n-dimensional vector in which all elements are
ones, 0 the vector in which all elements are zeros, 0n× n the
n× n-dimensional matrix in which all elements are zeros, Im×m

the m×m-dimensional identity matrix and opt( ⋅ ) the optimal
value of the problem. For a non-zero constant a, the sign
function is defined by the formula sign(a):= a/|a|, where |a| is
the absolute value of a. For a vector b, sign(b):= (sign(bi))i.

2. Quadratic surface support vector machine (QSSVM)

In this section, we review the QSSVM model briefly. More
details can be found in Luo et al (2016, 2014).
Given a training data set of l labelled points {(xi, yi)}i= 1

l ,

where xi ¼ ðxi1; xi2; ¼ ; ximÞT 2 Rm, yi∈ {1,− 1}, i= 1,…, l.
The QSSVM model is to find the parameter set (W, b, c) of a
quadratic surface

g xð Þ≜ 1
2
xTWx+ bTx + c ¼ 0;

where W ¼ ðwijÞm ´m 2 Sm; b ¼ ðbiÞm 2 Rm and c 2 R;

which separates the l training points {xi}i= 1
l into two classes

according to their labels.
In Luo et al (2014), by maximizing the sum of relative

geometrical margin of each training point with respect to
g(x)= 0 and minimizing the classification errors of all training
points, the following QSSVM model is proposed:

ðQSSVMÞ min
W2Sm ;b2Rm ;c2R;ξ2Rl

Xl

i¼1

k Wxi + b k22 +Cl

Xl

i¼1

ξi

s:t: yi
1
2

xi
� �T

Wxi + bTxi + c
� �

⩾ 1 - ξi; i ¼ 1; ¼ ; l;

ξ ¼ ξ1; ξ2; ¼ ; ξlð ÞT ⩾ 0; ð1Þ
where the slack variable ξi is the margin of classification error for
xi and Cl> 0 is a penalty parameter.
The QSSVM model can be further simplified (Luo et al,

2014). First, let w be the vector formulated by taking the
(m2 +m)/2 elements of the upper triangle part of the matrix W,
that is,

w≜ w11;w12; ¼ ;w1m;w22;w23; ¼ ;w2m; ¼ ;wmmð ÞT2 R
m2 +m

2 :

Then, for i= 1,…, l, we can construct an m× (m2 +m)/2
matrixMi for the training point xi 2 Rm as follows. For the j-th
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row ofMi in Rðm2 +mÞ=2; j ¼ 1; 2; ¼ ;m; if the p-th element of
w is wjk or wkj for some k= 1,2,…,m, we assign the p-th
element of the j-th row ofMi to be xk

i . Otherwise, we assign it to

be 0. Afterwards, let Hi≜ðMi; Im ´mÞ 2 Rm ´ ððm2 +mÞ=2 +mÞ;
i ¼ 1; ¼ ; l; G≜

Pl
i¼1 H

T
i Hi 2 Sðm2 + 3mÞ=2, v≜ðwT ; bTÞT

2 Rðm2 + 3mÞ=2 and si≜ðð1=2Þxi1xi1; ¼ ; xi1x
i
m; ð1=2Þ

xi2x
i
2; ¼ ; xi2x

i
m; ¼ ; ð1=2Þxim - 1x

i
m - 1; x

i
m - 1x

i
m; ð1=2Þ

ximx
i
m; x

i
1; x

i
2; ¼ ; ximÞ 2 Rðm2 + 3mÞ=2:

Then, Problem (1) can be reformulated as

min
v2Rm2 + 3m

2 ;c2R;ξ2Rl

vTGv +Cl

Xl

i¼1

ξi

s:t: yi sTi v + c
� �

⩾ 1 - ξi; i ¼ 1; ¼ ; l;

ξ ¼ ξ1; ξ2; ¼ ; ξlð ÞT ⩾ 0: ð2Þ

Notice that the matrix G is positive semi-definite, thus, Problem
(2) is a convex quadratic programming problem with linear
constraints.

3. Semi-supervised quadratic surface support vector
machine (SSQSSVM)

In this section, we propose the SSQSSVM model for semi-
supervised binary classification and convert it to an equivalent
non-convex optimization problem.
Given a data set of n data points {xi}i= 1

n , in which the first l
points are labelled and the rest n− l points are unlabelled. Semi-
supervised binary classification is to classify unknown data
points into two groups based on both of the labelled and
unlabelled data points. Let y= (( yl)T,( yn− l)T)T be the label
vector, where yl= ( y1, y2,…, yl)

T∈ {− 1, 1}l is known, and
yn− l= ( yl+1, yl+2,…, yn)

T∈ {− 1, 1}n− l is unknown.
Following the logic of the S3VM model in Chapelle et al

(2008), an SSQSSVM model is proposed as below, by adding
continuous variables ξl+1,…, ξn and binary integer variables
yl+1,yl+2,…, yn to the QSSVM model:

SSQSSVMð Þ min
v2Rm2 + 3m

2 ;c2R;ξ2Rn;yn - l2Rn - l

vTGv+Cl

Xl

i¼1

ξi +Cn - l

Xn
j¼l + 1

ξj

s:t: yi s
T
i v + c

� �
⩾ 1 - ξi; i ¼ 1; ¼ ; l;

yj sTj v + c
� �

⩾ 1 - ξj; j ¼ l + 1; ¼ ; n;

yn - l ¼ yl + 1; yl + 2; ¼ ; ynð ÞT2 f - 1; 1gn - l;

ξ ¼ ξ1; ξ2; ¼ ; ξnð ÞT ⩾ 0; ð3Þ

where Cl and Cn− l are the penalty parameters for labelled and
unlabelled data sets, respectively, which are used to balance the three
expressions in the objective function. By tuning Cl and Cn− l, we may
derive the best separating surface. Problem (3) is a mixed-integer
programming problem, which is NP-hard in general.

One thing we need to pay attention to is that the
constraints ξi⩾ 0, j= l + 1,…, n can be further restricted.
If ξ is feasible to Problem (3), it is easy to see that the
inequalities ξj⩽ 1, j= l + 1,…, n always hold since the
objective of Problem (3) is to minimize the sum of ξj for
j= l + 1,…, n. Hence, we can replace the constraints ξj⩾ 0,
j= l + 1,…, n by the constraints 0⩽ ξj⩽ 1, j= l + 1,…, n in
Problem (3).
Following the fact that constraints 0⩽ ξj⩽ 1 hold for j= l+1,

…, n, we may derive an equivalent problem of Problem (3) as
the following, similar to that in Chapelle et al (2008):

SSQSSVM0ð Þ min
v2Rm2 + 3m

2 ;c2R;ξ2Rn

vTGv +Cl

Xl

i¼1

ξi +Cn - l

Xn
j¼l + 1

ξj

s:t: yi sTi v + c
� �

⩾ 1 - ξi; i ¼ 1; ¼ ; l;

j sTj v + c j ⩾ 1 - ξj; j ¼ l+ 1; ¼ ; n;

ξ ¼ ξ1; ξ2; ¼ ; ξnð ÞT ⩾ 0: ð4Þ

This problem is an optimization problem with a convex
objective function and linear and non-convex absolute-value
constraints.
The proof of the equivalence between Problems (3) and (4)

can be easily verified. If (v*, c*, ξ*,( yn− l)*) is optimal to
Problem (3), it is easy to verify that (v*, c*, ξ*) is feasible to
Problem (4). Hence the optimal value of Problem (3) is not
lower than that of Problem (4). On the contrary, if we have an
optimal solution ðv; c; ξÞ of Problem (4), ðv; c; ξ; yn - lÞ is
feasible to Problem (3), where yn - l ¼ ðsignðsTl + 1v + cÞ,
signðsTl + 2v + cÞ; ¼ ; signðsTn v + cÞÞ. Correspondingly, the opti-
mal value of Problem (4) is not lower than that of Problem (3).
Therefore, Problems (3) and (4) are equivalent.

4. Semi-definite relaxations of SSQSSVM

Since the semi-definite relaxation is a computationally
efficient technique for solving non-convex quadratic pro-
gramming problems approximately, various relaxation-based
methods for S3VM have been proposed (De Bie and
Cristianini, 2004; Xu and Schuurmans, 2005; Valizadegan
and Jin, 2006; Xu et al, 2008; Bai et al, 2012, 2013; Bai and
Yan, 2015). In this section, we derive a semi-definite
relaxation for each of the two equivalent formulations of the
SSQSSVM model.

4.1. Semi-definite relaxation of SSQSSVM

Define n1≜ðm2 + 3mÞ=2 + 2n - l + 1, u≜ðvTc ξTðyn - lÞTÞT
≜ðu1; u2; ¼ ; un1Þ 2 Rn1 : For i= 1,…, l, let el

i be an l-dimen-
sional vector in which all elements are 0 except that its i-th
element is 1. For j= 1,…, n− l, let en− l

j be an (n− l)-dimen-
sional vector in which all elements are 0 except that its j-th
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element is 1. Then, Problem (3) can be reformulated as:

min
u2Rn1

uTQu + qTu

s:t: aTi u⩾ 1; i ¼ 1; ¼ ; l;

f Tj u
� �

dTj u
� �

⩾ 1 - gTj u; j ¼ 1; ¼ ; n - l;

uk ⩾ 0; k ¼ m2 + 3m
2

+ 2; ¼ ;
m2 + 3m

2
+ n + 1;

ut 2 - 1; 1f g; t ¼ m2 + 3m
2

+ n + 2; ¼ ; n1; ð5Þ

where q ¼ 0
1 ´ m2 + 3m

2 + 1ð Þ CleTl Cn - leTn - l 01 ´ ðn - lÞ
� �T

2 Rn1 ;

Q ¼
G 0m2 + 3m

2 ´ ð2n - l + 1Þ

0ð2n- l + 1Þ ´ m2 + 3m
2

0ð2n - l + 1Þ ´ ð2n - l + 1Þ

0
@

1
A 2 Sn1 ;

dj ¼ sj 1 01 ´ ð2n - lÞ
� �T2 Rn1 ;

ai ¼ yisTi yi eil
� �T

01 ´ ð2n - 2lÞ
� �T

2 Rn1 ;

f j ¼ 0
1 ´ ðm2 + 3m

2 + n + 1Þ ejn- l
� �T� �T

2 Rn1 ;

gj ¼ 0
1 ´ ðm2 + 3m

2 + l + 1Þ ejn - l
� �T

01 ´ ðn - lÞ
� �T

2 Rn1 ;

for i ¼ 1; ¼ ; l; j ¼ 1; ¼ ; n - l:

This problem is a quadratic programming problem with a
convex objective function and a non-convex feasible domain.
An effective approach to approximate Problem (5) is to use the
semi-definite relaxation technique. The idea is to reformulate
the problem by introducing a rank-1 matrix variable U=uuT.
After dropping the constraint rank(U)= 1, we derive

SDP1ð Þ min
u2Rn1 ;U2Sn1

Q�U + qTu

s:t: aTi u⩾ 1; aia
T
i

� ��U⩾ 1; i ¼ 1; ¼ ; l;

f jd
T
j �U⩾ 1 - gTj u; j ¼ 1; ¼ ; n - l;

Utt ¼ 1; t ¼ m2 + 3m
2

+ n + 2; ¼ ; n1;

uk ⩾ 0;Ukk ⩾ 0; k ¼ m2 + 3m
2

+ 2; ¼ ;
m2 + 3m

2
+ n + 1;

U - uuTk0: ð6Þ
Problem (6) is a semi-definite programming problem, which is
polynomial-time solvable. Suppose that (u*,U*) is optimal to
Problem (6), we can obtain an approximated optimal solution
for Problem (3) by letting yn - l ¼ ðsignðu*ðm2 + 3mÞ=2 + n + 2Þ,
signðu*ðm2 + 3mÞ=2 + n + 3Þ; ¼ ; signðu*n1ÞÞT . Besides, to avoid

unbalanced solutions, the following class-balancing constraint
in Chapelle et al (2008) can be added: ð1=ðn - lÞÞPn

i¼l + 1 yi ¼
2r - 1; where r is estimated by the ratio of the number of data
points with a positive label in the total number of data points in
the labelled data set.

4.2. Semi-definite relaxation of SSQSSVM′

Define n2≜ðm2 + 3mÞ/2+ n + 1; z≜ðvTc ξTÞT 2 Rn2 ; then
Problem (4) can be reformulated as

min
z2Rn2

zT ~Qz + ~qTz

s:t: ~aTi z⩾ 1; i ¼ 1; ¼ ; l;

j ~dTj z j ⩾ 1 - ~gTj z; j ¼ 1; ¼ ; n - l;

zk ⩾ 0; k ¼ m2 + 3m
2

+ 2; ¼ ; n2; ð7Þ

where ~q ¼ 01 ´ m2 + 3m
2 + 1ð Þ 1 CleTl Cn - leTn - l

� �T
2 Rn2 ;

~dj ¼ sTj 1 01 ´ n
� �T2 Rn2 ;

~Q ¼
G 0m2 + 3m

2 ´ ðn + 1Þ

0ðn + 1Þ ´ m2 + 3m
2

0ðn + 1Þ ´ ðn + 1Þ

0
@

1
A 2 Sn2 ;

~ai ¼ yisTi yi eil
� �T

01 ´ ðn - lÞ
� �T

2 Rn2 ;

~gj ¼ 01 ´ ðm2 + 3m
2 + l + 1Þ e jn - l

� �T� �T
2 Rn2 ;

for i ¼ 1; ¼ ; l; j ¼ 1; ¼ ; n - l:

This problem is also a non-convex optimization problem
with a convex objective function and a non-convex feasible

domain. We see that the constraints j ~dTj z j ⩾ 1 - ~gTj z; j ¼
1; ¼ ; n - l; in Problem (7) can be reformulated as

ð~dTj zÞ2 ⩾ ð1 - ~gTj zÞ2; j ¼ 1; ¼ ; n - l; equivalently. By introdu-
cing a matrix variable Z= zzT, then dropping the non-convex
constraint of rank(Z)= 1, we have the following semi-definite
relaxation problem:

SDP2ð Þ min
z2Rn2 ;Z2Sn2

~Q �Z + ~qTz

s:t: ~aTi z⩾ 1; ~ai~a
T
i �Z⩾ 1; i ¼ 1; ¼ ; l;

~dj~d
T
j - ~gj~g

T
j

� �
�Z + 2 ~gTj z⩾ 1; j ¼ 1; ¼ ; n - l;

zk ⩾ 0; Zkk ⩾ 0; k ¼ m2 + 3m
2

+ 2; ¼ ;
m2 + 3m

2
+ n + 1;

Z - zzTk0: ð8Þ
If we have an optimal solution (z*,Z*) of Problem (8), the

labels of unlabelled data points can be approximately derived
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by letting yj + l ¼ signð~dTj z*Þ; j ¼ 1; ¼ ; n - l: Similar to

SDP1, the following balancing constraints similar to
that in Chapelle et al (2008) can also be added:
ð1=ðn - lÞÞPn

i¼l + 1 v
Tsi + c ¼ 2r - 1; where r is estimated by

the class ratio of the labelled data set. Compared with problem
SDP1, problem SDP2 has fewer variables for more efficient
computation.

4.3. Relationship between SDP1 and SDP2

Theorem 1 Let (u*,U*) and (z*, Z*) be the optimal solutions
to the problems SDP1 and SDP2, respectively. If rank

(U*)= rank(Z*)= 1, then problems SDP1 and SDP2 are
equivalent.

This theorem tells us that these two semi-definite relaxations
are equivalent, if the rank-1 condition holds for both problems
(for more details of Theorem 1, please refer to the Appendix).
Since problem SDP2 has fewer variables than problem SDP1,
we adopt problem SDP2 for testing the performance of the
SSQSSVM model for more efficient computation.

5. Numerical experiments

In this section, we investigate the performance of the
SSQSSVM model on some artificial and public benchmark

a b

c

Figure 1 The distribution of artificial data sets: (a) 2circles; (b) 2d-non-convex; (c) 3d-non-convex. Triangle and square represent two
different classes of data points, respectively. The filled points are labelled, and the hollow ones are unlabelled.
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data sets. For comparisons, the CCCP (Collobert et al, 2006),
LDS (Chapelle and Zien, 2005), convex relaxation (CTSVM)
(Xu et al, 2008) and cutting plane S3VM (CutS3VM) (Zhao
et al, 2008) methods are also tested on the same data sets for
semi-supervised classification. Moreover, to see whether the
unlabelled points make contributions to a suitable classifier, we
test the standard SVM model on the same data sets using only
the labelled data points for comparisons.
Notice that the tested artificial data sets include the 2circles,

2d-hyperbola and 3d-hyperbola data sets. The distribution of
data points in these three data sets are shown in Figure 1. Five
public benchmark data sets (Iris, Seeds, Iono, Sonar and Uspst)
are also used for computational experiments. The Iris, Seeds,
Iono and Sonar data sets are obtained from the UC Irvine
Machine Learning Repository (UCI) (downloaded from http://
archive.ics.uci.edu/ml/datasets.html), while the Uspst data set is
chosen from Zhao et al (2008). For binary classification, if one
data set contains more than two classes, we only choose two of
them for test. The information of tested data sets (with chosen
classes) is shown in Table 1.
For each tested data set, like most practices in the literature of

S3VM models (Chapelle and Zien, 2005; Collobert et al, 2006;
Xu et al, 2008; Zhao et al, 2008), we randomly pick a fixed
number of data points (shown in Table 1) as the labelled data
points, and the remaining points are treated as the unlabelled

ones. SSQSSVM is first trained using the labelled and unla-
belled data points to generate the parameters of the classifying
quadratic surface. Then the quadratic surface is used to classify
the unlabelled data points, and then the misclassification
rate is calculated. Here, the misclassification rate is the ratio
of the number of mislabelled data points in the total number
of unlabelled data points. To be statistically meaningful, we
repeat the test with randomly selected labelled points for 30
times. In the kernel-based methods, the Gaussian kernel

kðxi; xjÞ ¼ expð - xi - xjk k2=2σ2Þ is used, where the parameter
σ is chosen as the median of the pairwise distances. For all
methods, we use the grid method to find the optimal parameters

Table 1 Information of tested data sets

Data sets Number of features Positive class Negative class Number of labelled points

Name Number of points Name Number of points

2circles 2 Class 1 100 Class 2 100 20
2d-hyperbola 2 Class 1 100 Class 2 100 20
3d-hyperbola 3 Class 1 100 Class 2 100 20
Iris 4 Versicolour 50 Virginica 50 10
Seeds 7 Kama 70 Canadian 70 14
Iono 34 Bad 225 Good 126 20
Sonar 60 Rock 97 Mine 111 20
Uspst 256 Class 4 196 Class 9 180 15

Table 2 Mean and standard deviation of misclassification rates (%) for tested data sets

Data sets SSQSSVM CTSVM CutS3VM LDS SVM

Mean std Mean std Mean std Mean std Mean std

2circles 1.67 2.23 6.33 4.36 2.44 0.95 2.17 3.60 7.06 3.65
2d-hyperbola 10.11 8.85 16.61 9.71 11.28 7.40 49.17 4.30 29.67 5.63
3d-hyperbola 22.94 12.06 49.07 3.33 47.94 4.00 48.96 3.98 44.44 0
Iris 5.37 2.22 8.33 3.42 6.00 3.31 4.59 0.96 8.78 4.69
Seeds 8.44 1.58 8.70 1.80 8.62 1.90 10.03 1.51 12.30 3.11
Iono 13.49 3.60 17.07 5.08 14.15 6.15 14.76 5.59 20.86 8.33
Sonar 25.05 4.89 33.48 4.47 32.36 4.03 33.72 5.24 32.70 4.68
Uspst 8.85 1.36 15.87 4.05 8.08 6.02 11.28 5.06 35.84 7.25

Note: The bold values in this table are the best results among that of all the methods.

Table 3 Mean of CPU time(s) for tested data sets

Data sets SSQSSVM CTSVM CutS3VM LDS

2circles 184.19 8.19 13.82 0.24
2d-hyperbola 188.58 8.79 13.48 0.25
3d-hyperbola 210.06 8.44 7.71 0.27
Iris 26.41 3.14 3.58 0.20
Seeds 118.18 4.60 0.78 0.21
Iono 6.90 34.67 20.19 1.16
Sonar 1.52 8.35 10.90 0.53
Uspst 32.65 27.90 267.35 1.22
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Cl and Cn− l: log2Cl, log2Cn− l∈ {− 4,− 5,…, 9, 10}. For other
parameters in the compared methods, the default values are
used. All computational experiments in this paper are carried
out using Matlab 7.12 (R2011a) on a PC equipped with
2.60 GHz CPU and 4 GB usable RAM.
First, we test the SSQSSVM model on artificial, Iris and

Seeds data sets by solving problem SDP2 via the optimization
package CVX (Grant et al, 2015). The mean and standard
deviation of the calculated misclassification rates and average
CPU time of the 30 experiments are reported in Tables 2 and 3.
Then, for fair comparisons, we carry out similar experiments for
CTSVM, CutS3VM, LDS and SVM using the same labelled
and unlabelled data points, and record the results in Tables 2 and 3.
Notice that a smaller misclassification rate indicates that the
corresponding model performs better in terms of the

classification accuracy. Furthermore, we depict the separating
quadratic surface of each artificial data set for one single test,
generated by the SSQSSVM model, in Figure 2.
Besides, we test the SSQSSVM model on Iono, Sonar and

Uspst data sets by directly using the decomposition algorithm
(Le et al, 2013) instead of solving problem SDP2. That is
because, for these data sets with relative larger number of
features, solving problem SDP2 would lead to memory
overflows, which is a common phenomenon for solving the
SDP relaxations of S3VM model (De Bie and Cristianini,
2004; Xu and Schuurmans, 2005; Bai and Yan, 2015).
Using the similar experimental procedure as that implemen-
ted on the artificial data set, all methods (including
SSQSSVM, CCCP, LDS, Cut3SVM and SVM) are imple-
mented on the Iono, Sonar or Uspst data set, respectively,

a b

c

Figure 2 Separating quadratic surfaces produced by SSQSSVM on artificial data sets: (a) 2circles; (b) 2d-non-convex; (c) 3d-non-convex.

Xin Yan et al—A kernel-free QSSVM for semi-supervised learning 1007



and all the computational results are included in Tables 2
and 3. Finally, we draw the boxplots in Figures 3 and 4 for
the misclassification rates on all tested data sets to further
show the performance of our model.
From Tables 2–3 and Figures 2–4, we have the following

observations:

● Our methods for solving SSQSSVM outperform other
existing well-known methods for most experiments on
tested data sets in terms of misclassification rate. Espe-
cially for the artificial, Seeds and Sonar data sets, the
mean, median and minimum values of our methods are all
the smallest

● For experiments on tested data sets, the tested semi-
supervised SVM model yields more accurate classification

than the supervised SVM model, which indicates that the
unlabelled data points always help make the classifiers more
suitable

● The average CPU time of the SSQSSVM model on the
artificial, Iris or Seeds data set is comparably large because of
solving its SDP relaxation problem SDP2, while the average
CPU time of the SSQSSVM model on the Iono, Sonar and
Uspst data set is comparably small by using the decomposi-
tion algorithm

6. Concluding remarks

In this paper, we have proposed a kernel-free SSQSSVMmodel
directly using a quadratic surface for semi-supervised binary
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Figure 3 Boxplots for artificial data sets: (a) 2circles data set; (b) 2d-hyperbola data set; (c) 3d-hyperbola data set. The star and the middle
line denote the mean and median, respectively.
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Figure 4 Boxplots for benchmark data sets: (a) Iris data set; (b) Seeds data set; (c) Iono data set; (d) Sonar data set; (e) Uspst data set. The
star and the middle line denote the mean and median, respectively.
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classification. The proposed model corresponds to a mixed-
integer programming problem, which is NP-hard. We derived
the equivalent non-convex problem with absolute-value con-
straints, and presented the polynomial-time solvable semi-
definite relaxation of this problem for finding approximate
solutions. Moreover, we implemented the proposed SSQSSVM
model partially by solving the relaxed problem on both artificial
and public benchmark data sets. The numerical results indicated
that our methods for solving SSQSSVM produced more
accurate classification than some existing well-known methods
for solving S3VM such as CTSVM, LDS and Cut3SVM
methods. And the computational results also indicated that our
proposed SSQSSVM model outperforms the S3VM model in
terms of classification accuracy.
In Wen et al (2010), an alternating direction method of

multipliers (ADMM) for semi-definite programming problem is
presented, which leads to a computationally efficient algorithm
for solving high-dimensional problems. For future research, we
plan to reformulate the SDP relaxations for SSQSSVM and
then develop an ADMM algorithm for solving such problems.
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National Science Foundation Grant (No. DMI-0553310).
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Appendix

Proof of Theorem 1

The Proof of Theorem 1 can be derived as follows:

Proof First, we show that opt(SDP1) ⩾ opt(SDP2). Given an
optimal solution (u*,U*) of problem SDP1, let

zi≜u*i ; Zij≜U
*
ij; i; j ¼ 1; ¼ ;

m2 + 3m
2

+ n + 1:

Then,

~aTi z ¼ aTi u
* ⩾ 1; ~ai ~aið ÞT�Z ¼ aia

T
i �U* ⩾ 1; i ¼ 1; ¼ ; l:

Since

U*
tt ¼1; t ¼ m2 + 3m

2
+ n + 2; ¼ ; n1;

and gTj u
*⩽1;

j ¼1; ¼ ; n - l;

we have

~dj~d
T
j �Z⩾ f jd

T
j �U*

� �2
:

Since rank(U*)= 1, we have

~dj~d
T
j �Z⩾ 1 - gTj u

*
� �2¼ 1 - 2~gTj z + ~g~g

T
j �Z;

j ¼ 1; ¼ ; n - l:

Moreover, we have

zk ¼u*k ⩾ 0; Zkk ¼ U*
kk ⩾ 0;

k ¼m2 + 3m
2

+ 2; ¼ ;
m2 + 3m

2
+ n + 1:

Thus (z, Z) is a feasible solution to problem SDP2.

Finally, we have

~Q�Z + ~qTz ¼ Q�U* + qTu*;

which implies that opt(SDP1) ⩾ opt(SDP2).
Next, we show that opt(SDP2) ⩾ opt(SDP1). Suppose that
(z*,Z*) is an optimal solution of problem SDP2. Let

D≜ð~d1; ~d2; ¼ ; ~dn - lÞ; and

u≜
z*

sign DTz*
� �

0
@

1
A;

U≜
Z* z*sign DTz*

� �T
sign DTz*

� �
z*ð ÞT sign DTz*

� �
sign DTz*

� �T
0
@

1
A:

We have

aTi u ¼ ~aTi z
* ⩾ 1; aiaTi

� ��U ¼ ~ai~a
T
i �Z* ⩾ 1; i ¼ 1; ¼ ; l:

Since

~dj~d
T
j �Z* ⩾ 1 - 2~gTj z

* + ~gj~g
T
j �Z*

and ~gTj z
* ≤ 1;

j ¼ 1; ¼ ; n - l;

using the fact that rank(Z*)= 1, we have

j ~dTj z* j ⩾ 1 - ~gTj z
*; j ¼ 1; ¼ ; n - l:

Consequently,

f jd
T
j �U ¼ sign ~d

T
j z

*
� �

~d
T
j z

* ⩾ 1 - gTj u; j ¼ 1; ¼ ; n - l:

Moreover,

Utt ¼ sign ~d
T
t z

*
� �� �2

¼ 1; t ¼ m2 + 3m
2

+ n + 2; ¼ ; n1;

and

uk ¼z*k ⩾ 0;Ukk ¼ Z*
kk ⩾ 0;

k ¼m2 + 3m
2

+ 2; ¼ ;
m2 + 3m

2
+ n + 1:

Therefore, (u,U) is a feasible solution to problem SDP1.
Also, we have

Q�U + qTu ¼ ~Q�Z* + ~qTz*;

which implies that opt(SDP2) ⩾ opt(SDP1). □
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