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Abstract
Support vectormachine (SVM) is one of themost important class ofmachine learningmodels
and algorithms, and has been successfully applied in various fields. Nonlinear optimization
plays a crucial role in SVM methodology, both in defining the machine learning models and
in designing convergent and efficient algorithms for large-scale training problems. In this
paperwe present the convex programming problems underlying SVM focusing on supervised
binary classification.We analyze themost important and used optimizationmethods for SVM
training problems, and we discuss how the properties of these problems can be incorporated
in designing useful algorithms.

Keywords Statistical learning theory · Support vector machine · Convex quadratic
programming · Wolfe’s dual theory · Kernel functions · Nonlinear optimization methods

1 Introduction

The support vector machine (SVM) is widely used as a simple and efficient tool for linear
and nonlinear classification as well as for regression problems. The basic training principle
of SVM, motivated by statistical learning theory (Vapnik 1998), is that the expected clas-
sification error for unseen test samples is minimized, so that, SVMs define good predictive
models.

In this paper, as done in Piccialli and Sciandrone (2018), we focus on supervised (linear
and nonlinear) binary SVM classifiers, whose task is to classify objects (patterns) into two
groups using the features describing the objects and a labelled dataset (the training set). We
will not enter into the details of statistical issues concerning SVMmodels, norwewill analyze
the standard cross-validation techniques used for adjusting SVM hyperparameters in order
to optimize the predictive performance as machine learning models. A suitable analysis of

This is an updated version of the paper that appeared in 4OR, Vol. 16, pp. 111–149, 2018.

B Marco Sciandrone
sciandrone@diag.uniroma1.it

Veronica Piccialli
piccialli@diag.uniroma1.it

1 Dipartimento di Ingegneria Informatica, Automatica e Gestionale “A. Ruberti”, Sapienza Università
degli Studi di Roma, via Ariosto 25, 00185 Roma, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10479-022-04655-x&domain=pdf
http://orcid.org/0000-0002-5234-3174


16 Annals of Operations Research (2022) 314:15–47

statistical andmachine learning issues can be found, for instance, inBishop (2006), Scholkopf
and Smola (2001) and Shawe-Taylor and Cristianini (2004). Here we will limit our analysis
to theoretical, algorithmic and computational issues related to the optimization problem
underlying the training of SVMs.

SVM training requires solving (large-scale) convex programming problems, whose diffi-
culties are mainly related to the possibly huge number of training instances, that leads to a
huge number of either variables or constraints. The particular structure of the SVM training
problems has favored the design and the development of ad hoc optimization algorithms to
solve large-scale problems. Thanks to the convexity of the constrained problem, optimiza-
tion algorithms for SVM are required to quickly converge towards any minimum. Thus the
requirements are well-defined from an optimization point of view, and this has motivated a
wide research activity (even of the optimization community) to define efficient and conver-
gent algorithms for SVM training (see, for instance, Astorino and Fuduli 2015; Boser et al.
1992; Byrd et al. 2011; Carrizosa and Romero Morales 2013; Cortes and Vapnik 1995; Fan
et al. 2008; Ferris and Munson 2004; Franc and Sonnenburg 2009; Fung and Mangasarian
2001; Gaudioso et al. 2017; Hsu and Lin 2002; Keerthi and Lin 2003; Lee et al. 2015; Lee
and Mangasarian 2001; Mangasarian and Musicant 2001; Mangasarian 2006; Mavroforakis
and Theodoridis 2006; Osuna et al. 1997; Glasmachers and Dogan 2013; Tsang et al. 2005;
Wang and Lin 2014; Wang et al. 2012. We observe that in neural network training, where
the unconstrained optimization problem is nonconvex and suitable safeguards (for instance,
early stopping) must be adopted in order to avoid converging too quickly towards undesired
minima (in terms of generalization capabilities), the requirements of a training algorithm are
not well-defined from an optimization point of view.

The SVM training problem can be equivalently formulated as a (linearly constrained)
quadratic convex problem or, by Wolfe’s duality theory, as a quadratic convex problem
with one linear constraint and box constraints. Depending on the formulation, several opti-
mization algorithms have been specifically designed for SVM training. Thus, we present
the most important contributions for the primal formulations, i.e., Newton methods, least-
squares algorithms, stochastic sub-gradient methods, cutting plane algorithms, and for the
dual formulations decomposition methods. Interior point methods were developed both for
the primal and the dual formulations. We observe that the design of convergent and efficient
decomposition methods for SVM training has yielded relevant advances both from a theo-
retical and computational point of view. Indeed, the “classical” decomposition methods for
nonlinear optimization, such as the successive over-relaxation algorithm and the Jacobi and
Gauss-Seidel algorithms, are applicable only when the feasible set is the Cartesian product of
subsets defined in smaller subspaces. Since the SVM training problem contains an equality
constraint, such methods cannot be directly employed, and this has motivated the study and
the design of new decomposition algorithms improving the state-of-art.

The paper is organized as follows.We formally introduce in Sect. 2 the concept of optimal
separating hyperplane underlying linear SVM, we give the primal formulation of the linear
SVM training problem, and we recall the fundamental concepts of the Wolfe’s dual theory
necessary for defining the dual formulation of the linear SVM training problem. The dual
formulation allows us, through the so-called kernel trick, to immediately extend in Sect. 3
the approach of linear SVM to the case of nonlinear classifiers. Sections 4 and 5 contain the
analysis of unconstrained and constrainedmethods, respectively, for the primal formulations.
The wide class of decomposition methods for the dual formulation is analyzed in Section 6.
Interior point methods are presented in Sect. 7. Finally, in Sect. 8 we direct the reader to the
available software for SVM training related to the presented methods. In the appendices we
provide the proofs of important results concerning: (1) the existence and uniqueness of the
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optimal hyperplane; (2) Wolfe’s dual theory both in the general and in the quadratic case;
(3) the kernel functions. As regards (1), although the result is well-known, we believe that
the kind of proof is novel and technically interesting. Concerning (2) and (3), they represent
pillars of SVMmethodology, and a reader might find them of interest to obtain some related
technical insights.

2 The optimal separating hyperplane and linear SVM

The training set (TS) is a set of l observations:

T S = {(xi , yi ), xi ∈ X ⊆ �n, yi ∈ Y ⊆ �, i = 1, . . . , l}.
The vectors xi are the patterns belonging to the input space. The scalars yi are the labels
(targets). In a classification problem we have that yi ∈ {−1, 1}, in a regression problem
yi ∈ �. We will focus only on classification problems.

Let us consider two disjoint sets A and B of points in �n to be classified. Assume that A
and B are linearly separable, that is, there exists a hyperplane H = {x ∈ �n : wT x+b = 0}
such that the points xi ∈ A belong to one half-space, and the points x j ∈ B belong to the
other half-space. More precisely, we can assume that there exist a vectorw ∈ �n and a scalar
b ∈ � such that

wT xi + b ≥ 1, ∀xi ∈ A
wT x j + b ≤ −1, ∀x j ∈ B

(1)

A hyperplane will be indicated by H(w, b). We say that H(w, b) is a separating hyperplane
if the pair (w, b) is such that (1) holds. The decision function of a linear classifier associated
with a separating hyperplane is fd(x) = sgn(wT x + b). We introduce the concept ofmargin
of a separating hyperplane.

Definition 1 Let H(w, b) be a separating hyperplane. Themargin of H(w, b) is theminimum
distance ρ between points in A ∪ B and the hyperplane H(w, b), that is

ρ(w, b) = min
xi∈A∪B

{ |wT xi + b|
‖w‖

}
.

It is quite intuitive that the margin of a given separating hyperplane is related to the general-
ization capability of the corresponding linear classifier, i.e., to correctly classify unseen data.
The relationship between the margin and the generalization capability of linear classifiers is
analyzed by the statistical learning theory (Vapnik 1998), which theoretically motivates the
importance of defining the hyperplane withmaximum margin, the so-called optimal separat-
ing hyperplane.

Definition 2 Given two linearly separable sets A and B, the optimal separating hyperplane
is a separating hyperplane H(w�, b�) having maximum margin.

It can be proved that the optimal hyperplane exists and is unique (see “Appendix A”). From
the above definition we get that the optimal hyperplane is the unique solution of the following
problem

max
w∈�n ,b∈� min

xi∈A∪B

{ |wT xi + b|
‖w‖

}

s.t. yi
[
wT xi + b

] − 1 ≥ 0 i = 1, . . . , l.

(2)
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It can be proved that problem (2) is equivalent to the convex quadratic programming problem

min
w∈�n ,b∈� F(w) = 1

2
‖w‖2

s.t. yi
[
wT xi + b

] − 1 ≥ 0, i = 1, . . . , l.

(3)

Now assume that the two sets A are B are not linearly separable. This means that the system
of linear inequalities (1) does not admit solution. Let us introduce slack variables ξi , with
i = 1, . . . , l:

yi
[
wT xi + b

]
− 1 + ξi ≥ 0, i = 1, . . . , l. (4)

Note that whenever a vector xi is not correctly classified the corresponding variable ξ i is
greater than 1. The variables ξi corresponding to vectors correctly classified and belonging
to the “separation zone” are such that 0 < ξ i < 1. Therefore, the term

∑l
i=1 ξi is an upper

bound on the number of the classification errors on the training vectors. Then, it is quite
natural to add to the objective function of problem (3) the term C

∑l
i=1 ξi , where C > 0 is

a parameter to assess the training error. The primal problem becomes

min
w,b,ξ

F(w, ξ) = 1

2
‖w‖2 + C

l∑
i=1

ξi

s.t. yi
[
wT xi + b

] − 1 + ξi ≥ 0 i = 1, . . . , l
ξi ≥ 0 i = 1, . . . , l

(5)

For reasons explained later, the dual problem of (5) is often considered.We direct the reader to
Bertsekas (1999),Mangasarian (1994) and Fletcher (1987) for insights on duality in nonlinear
programming. Let us consider the convex programming problem

min
x

f (x)

Ax − b ≤ 0,
(6)

where f : �n → � is a convex, continuously differentiable function, A ∈ �m×n , b ∈ �m .
Introducing the Lagrangian function L(x, λ) = f (x) + λT (Ax − b), Wolfe’s dual of (6) is
defined as follows

max
x,λ

L(x, λ)

∇x L(x, λ) = 0
λ ≥ 0.

(7)

It can be proved (see Appendix B) that, if problem (6) admits a solution x�, then there exists
a vector of Lagrange multipliers λ� such that (x�, λ�) is a solution of (7).

In the general case, given a solution (x̄, λ̄) of Wolfe’s dual, we can not draw conclusions
with respect to the primal problem (6). In the particular case of convex quadratic programming
problems the following result holds (see “Appendix B”).

Proposition 1 Let f (x) = 1
2 x

T Qx + cT x, and suppose that the matrix Q is symmetric and
positive semidefinite. Let (x̄, λ̄) be a solution of Wolfe’s dual (7). Then, there exists a vector
x� (not necessarily equal to x̄) such that

(i) Q(x� − x̄) = 0;
(ii) x� is a solution of problem (6); and
(iii) x∗ is a global minimum of (6) with associated multipliers λ̄.
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Now let us consider the convex quadratic programming problem (5).Here the primal variables
are (w, b, ξ), and the condition ∇x L(x, λ) = 0 gives two constraints

w =
l∑

i=1

λi y
i xi

l∑
i=1

λi y
i = 0.

Then, setting X = [
y1x1, . . . , yl xl

]
, λT = [

λ1, . . . , λl
]
, Wolfe’s dual of (5) is a convex

quadratic programming problem of the form

min
λ

Γ (λ) = 1

2
λT XT Xλ − eT λ

s.t .
l∑

i=1

λi y
i = 0

0 ≤ λ ≤ C,

(8)

where eT = [1, . . . , 1].
Once a solution λ� is computed, the primal vector w� can be determined as follows

w� =
l∑

i=1

λ�
i y

i xi ,

i.e., w� depends only on the so-called (support vectors) xi whose corresponding multipliers
λ�
i are not null. The support vectors corresponding to multipliers λ�

i such that 0 < λ�
i < C are

called free support vectors, those corresponding to multipliers λ�
i = C are called bounded

support vectors. We also observe that assertion (iii) of Proposition 1 ensures that an optimal
solution (w�, b�) satisfies the complementarity conditions with multipliers equal to λ�. Thus,
by considering any free support vector xi , we have 0 < λ�

i < C , which implies

yi
(
(w�)T xi + b�

)
− 1 = 0, i = 1, . . . , l, (9)

so that, oncew� is computed, the scalar b� can be determined by means of the corresponding
complementarity condition defined by (9).

Finally, we observe that the decision function of a linear SVM is

fd(x) = sgn
(
(w∗)T x + b�

)
= sgn

(
l∑

i=1

λ�
i y

i (xi )T x + b�

)
.

Summarizing, we have that the duality theory leads to a convenient way to deal with the
constraints. Moreover, the dual optimization problem can be written in terms of dot products,
as well as the decision function, and this allows us to easily extend the approach to the case
of nonlinear classifiers.

3 Nonlinear SVM

The idea underlying the nonlinear SVM is that of mapping the data of the input space onto a
higher dimensional space called feature space and to define a linear classifier in this feature
space.
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Let us consider a mapping φ : �n → HwhereH is an Euclidean space (the feature space)
whose dimension is greater than n (the dimension can be even infinite). The input training
vectors xi are mapped onto φ(xi ), with i = 1, . . . , l.

We can think to define a linear SVM in the feature space by replacing xi with φ(xi ). Then
we have

• the dual problem (8) is replaced by the following problem

min
λ

Γ (λ) = 1
2

l∑
i=1

l∑
j=1

yi y jφ(xi )Tφ(x j )λiλ j −
l∑

i=1

λi

s.t .
l∑

i=1

λi y
i = 0

0 ≤ λi ≤ C i = 1, . . . , l;

(10)

• the optimal primal vector w� is

w� =
l∑

i=1

λ�
i y

iφ(xi );

• givenw� and any 0 < λ�
i < C , the scalar b� can be determined using the complementarity

conditions

yi

⎛
⎝ l∑

j=1

λ�
j y

jφ(x j )Tφ(xi ) + b�

⎞
⎠ − 1 = 0; and (11)

• the decision function takes the form

fd(x) = sgn
(
(w∗)Tφ(x) + b�

)
. (12)

Remark 1 The primal/dual relation in infinite dimensional spaces has been rigorously dis-
cussed in Lin (2001a).

From (12) we get that the separation surface is:

– linear in the feature space;
– non linear in the input space.

It is important to observe that both in the dual formulation (10) and in formula (12) concerning
the decision function it is not necessary to explicitly know the mapping φ, but it is sufficient
to know the inner product φ(x)Tφ(z) of the feature space. This leads to the fundamental
concept of kernel function.

Definition 3 Given a set X ⊆ �n , a function

K : X × X → �
is a kernel if

K (x, y) = φ(x)Tφ(y) ∀x, y ∈ X , (13)

where φ is an application X → H andH is an Euclidean space, that is, a linear space with a
fixed inner product.
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We observe that a kernel is necessarily a symmetric function. It can be proved that K (x, z)
is a kernel if and only if the l × l matrix

(
K (xi , x j )

)l
i, j=1

=
⎛
⎜⎝

K (x1, x1) . . . K (x1, xl)
...

K (xl , x1) . . . K (xl , xl)

⎞
⎟⎠

is positive semidefinite for any set of training vectors {x1, . . . , xl}. The kernel is often referred
to as theMercer kernel in the literature.We have the following result, whose proof is reported
in “Appendix C”.

Proposition 2 Let K : X × X → � be a symmetric function. Then K is a kernel if and only
if, for any choice of the vectors x1, . . . , x� in X the matrix

K = [
K (xi , x j )

]
i, j=1,...,�

is positive semidefinite.

Using the definition of kernel problem (10) can be written as follows

min
λ

Γ (λ) = 1
2

l∑
i=1

l∑
j=1

yi y j K (xi , x j )λiλ j −
l∑

i=1

λi

s.t .
l∑

i=1

λi y
i = 0

0 ≤ λi ≤ C i = 1, . . . , l.

(14)

By Proposition 2 it follows that problem (14) is a convex quadratic programming problem.
Examples of kernel functions are:
K (x, z) = (xT z + 1)p polynomial kernel (p integer ≥1)
K (x, z) = e−‖x−z‖2/2σ 2

Gaussian kernel (σ > 0)
K (x, z) = tanh(βxT z + γ ) hyperbolic tangent kernel (for suitable values of β and γ )
It can be shown that the Gaussian kernel is an inner product in an infinite dimensional space.
Using the definition of kernel function the decision function is

fd(x) = sgn

(
l∑

i=1

λ�
i y

i K (x, xi ) + b�

)
.

4 Unconstrained primal formulations

Let us consider the linearly constrained primal formulation (5) for linear SVM. It can be
shown that problem (5) is equivalent to the following unconstrained nonsmooth problem

min
w,b

1

2
‖w‖2 + C

l∑
i=1

max{0, 1 − yi (wT xi + b)}. (15)

The above formulation penalizes slacks (ξ ) linearly and is called L1-SVM. An unconstrained
smooth formulation is that of the so-called L2-SVM,where slacks are quadratically penalized,
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i.e.,

min
w,b

1

2
‖w‖2 + C

l∑
i=1

max2{0, 1 − yi (wT xi + b)}. (16)

Least Squares SVM (LS-SVM) considers the primal formulation (5), where the inequality
constraints

yi (wT xi + b) ≥ 1 − ξ i ,

are replaced by the equality constraints

yi (wT xi + b) = 1 − ξ i .

This leads to a regularized linear least squares problem

min
w,b

1

2
‖w‖2 + C

l∑
i=1

(yi (wT xi + b) − 1)2. (17)

The general unconstrained formulation takes the form

min
w,b

R(w, b) + C
l∑

i=1

L(w, b; xi , yi ), (18)

where R(w, b) is the regularization term and L(w, b; xi , yi ) is the loss function associated
with the observation (xi , yi ).

We observe that the bias term b plays a crucial role both in the learning model, i.e., it may
be critical for successful learning (especially in unbalanced datasets), and in the optimization-
based training process. The simplest approach to learn the bias term is that of adding one
more feature to each instance, with constant value equal to 1. In this way, in L1-SVM, L2-

SVM and LS-SVM, the regularization term becomes
1

2
(‖w‖2 + b2) with the advantages

of having convex properties of the objective function useful for convergence analysis and
the possibility to directly apply algorithms designed for models without the bias term. The
conceptual disavantage of this approach is that the statistical learning theory underlying SVM
models is based on an unregularized bias term. We will not go into the details of the issues
concerning the bias term.

The extension of the unconstrained approach to nonlinear SVM, where the data xi are
mapped onto the feature space H by the mapping φ : �n → H, are often done by means
of the representer theorem (Kimeldorf and Wahba 1970). Using this theorem we have that
the solution of SVM formulations can be expressed as a linear combination of the mapped
training instances. Then, we can train a nonlinear SVM without direct access to the mapped
instances, but using their inner products through the kernel trick. For instance, setting w =∑l

i=1βiφ(xi ), the optimization problem corresponding to L2-SVM with regularized bias
term is the following unconstrained problem

min
β,b

1

2
βT Kβ + C

l∑
i=1

max2{0, 1 − yiβT Ki }, (19)

where K is the kernel matrix associated to the mapping φ and Ki is the i−th column. Note
that both (16) and (19) are piecewise convex quadratic functions.
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4.1 Methods for primal formulations

First let us consider the nonsmooth formulation (15) without considering the bias term b. A
simple and effective stochastic sub-gradient descent algorithm has been proposed in Shalev-
Shwartz et al. (2011). The vector w is initially set to 0. At iteration t , a pair (xit , yit ) is
randomly chosen in the training set, and the objective function

f (w) = λ

2
‖w‖2 + 1

l

l∑
i=1

max{0, 1 − yi (wT xi )}

is approximated as follows

f (w; it ) = λ

2
‖w‖2 + max{0, 1 − yit (wT

t x
it )}.

The sub-gradient of f (w; it ) is
∇t = λwt − 1

[
yit wT

t x
it < 1

]
yit x it ,

where 1
[
yit wT

t x
it < 1

]
is the indicator function which takes the value one if its argument is

true and zero otherwise. The vector w is updated as follows

wt+1 = wt − ηt∇t ,

where ηt = 1
λt , and λ > 0. A more general version of the algorithm is the one based on

mini-batch iterations, where instead of using a single example (xit , yit ) of the training set, a
subset of training examples, defined by the set At ⊂ {1, . . . , P}, with |At | = r , is considered.
The objective function is approximated as follows

f (w; At ) = λ

2
‖w‖2 + 1

r

∑
i∈At

max{0, 1 − yi (wT xi )}

whose sub-gradient is

∇t = λwt − 1

r

∑
i∈At

1
[
yit wT

t x
it < 1

]
yit x it .

The updating rule is again

wt+1 = wt − ηt∇t .

In the deterministic case, that is, when all the training examples are used at each iteration,
i.e., At = {1, . . . , l}, the complexity analysis shows that the number of iterations required to
obtain an ε−approximate solution is O(1/λε). In the stochastic case, i.e., At ⊂ {1, . . . , l},
a similar result in probability is given. We observe that the complexity analysis relies on the
property that the objective function is λ−strongly convex, i.e.,

f (w) − λ

2
‖w‖2

is a convex function.
The extension to nonlinear SVM is performed taking into account that, once mapped the

input data xi onto φ(xi ), thanks to the fact that w is initialized to 0, we can write

wt+1 = 1

λt

l∑
i=1

αt+1[i]yiφ(xi ),
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where αt+1[i] counts how many times example i has been selected so far and we had a
non-zero loss on it. It can be shown that the algorithm does not require the explicit access to
the weight vector w. To this aim, we show how the vector α, initialized to zero, is iteratively
updated. At iteration t , the index it is randomly chosen in {1, . . . , l}, and we set

αt+1[i] = αt [i] i �= it .

If

yit
1

λt

l∑
i=1

αt [i]y j K (xit , xi ) < 1

then set αt+1[it ] = αt [it ] + 1, otherwise set αt+1[it ] = αt [it ]. Thus, the algorithm can
be implemented by maintaining the vector α, using only kernel evaluations, without direct
access to the feature vectors φ(x).

Newton-type methods for formulation (16) of L2-SVM have been proposed first in
Mangasarian (2002) and then in Keerthi and DeCoste (2005). The main difficulty of this
formulation concerns the fact that the objective function is not twice continuously differen-
tiable, so that the generalized Hessian must be considered. Finite convergence is proved in
both papers. The main peculiarities of the algorithm designed in Keerthi and DeCoste (2005)
are: (1) the formulation of a linear least square problem for computing the search direction
(i.e., the violated constraints, depending on the current solution, are replaced by equality
constraints); (2) the adoption of an exact line search for determining the stepsize. The matrix
of the least square problem has a number of rows equal to n + nv , where nv is the number of
violated inequality constraints, i.e., the constraints such that yiwT xi < 1.

Newton optimization for problem (19) and the relationship with the dual formulation have
been deeply discussed in Chapelle (2007). In particular, it is shown that the complexity of
one Newton step is O(lnsv + n3sv), where again nsv is the number of violated inequality
constraints, i.e., the constraints such that yi (βT Ki ) < 1.

In Chang et al. (2008), the primal unconstrained formulation for linear classification
(18) is considered, with L2 regularization and L2 loss function, i.e., f (w) = 1

2‖w‖2 +
C

∑l
i=1 max{0, 1 − yiwT xi }2. The authors propose a coordinate descent algorithm, where

wk+1 is constructed by sequentially updating each component of wk . Define

wk,i = (wk+1
1 , . . . , wk+1

i−1 , wk
i , . . . , w

k
n) for i = 2, . . . , n

with wk,1 = wk and wk,n+1 = wk+1. In order to update the i-th component defining wk,i+1,
the following one variable unconstrained problem is approximately solved:

min
z

f (wk,i + zei )

Theobtained function is a piecewise quadratic function, and the problem is solved bymeans of
a line search along the Newton direction computed using the generalized second derivative
proposed in Mangasarian (2002). The authors prove that the algorithm converges to an ε

accurate solution in O
(
nC3P6(#nz)3 log( 1

ε
)
)
where #nz is total number of nonzero values

of training data, and P = max |xij |.
Finally, standard algorithms for the least squares formulation (17) concerning LS-SVM

have been presented in Suykens and Vandewalle (1999) and in Cassioli et al. (2013). In
this latter paper an incremental recursive algorithm, which requires storing a square matrix
(whose dimension is equal to the number of features of the data), has been employed and
could be used, in principle, even for online learning.
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5 Constrained primal formulations and cutting plane algorithms

A useful tool in optimization is represented by cutting planes technique. Depending on the
class of problems, this kind of tool can be used for strengthening a relaxation, for solving a
convex problem by means of a sequence of LP relaxations, or for making tractable a problem
with an exponential number of constraints.

This type of machinery is applied in Joachims (2006), Joachims et al. (2009) and Joachims
andYu (2009) for training anSVM.Themain idea is to reformulate SVMtraining as a problem
with quadratic objective and an exponential number of constraints, but with only one slack
variable that measures the overall loss in accuracy in the training set. The constraints are
obtained as the combination of all the possible subsets of constraints in problem (5). Then, a
master problem that is the training of a smaller size SVM is solved at each iteration, and the
constraint that is most violated in the solution is added for the next iteration.

The advantage is that it can be proved that the number of iteration is bounded and the
bound is independent on the size of the problem, but depends only on the desired level of
accuracy.

More specifically, in Joachims (2006), the primal formulation (5) with b = 0 is considered
where the error term is divided by the number of elements in the training set, i.e.,

min
w,ξ

F(w, ξ) = 1

2
‖w‖2 + C

l

l∑
i=1

ξi

s.t. yi
[
wT xi

] − 1 + ξi ≥ 0 i = 1, . . . , l
ξi ≥ 0 i = 1, . . . , l.

(20)

Then, an equivalent formulation called Structural Classification SVM is defined:

min
w,ξ

F(w, ξ) = 1

2
‖w‖2 + Cξ

s.t. ∀c ∈ {0, 1}l : 1

l
wT

l∑
i=1

ci y
i xi ≥ 1

l

l∑
i=1

ci − ξ

ξ ≥ 0.

(21)

This formulation corresponds to summing up all the possible subsets of the constraints in
(20), and has an exponential number of constraints, one for each vector c ∈ {0, 1}l , but there
is only one slack variable ξ . The two formulations can be shown to be equivalent, in the sense
that any solution w∗ of problem (21) is also a solution of problem (20), with ξ∗ = 1

l

∑
ξ∗
i .

The proof relies on the observation that for any value of w the slack variables for the two
problems that attain the minimum objective value satisfy ξ = 1

l

∑
ξi . Indeed, for a given w

the smallest feasible slack variables in (20) are ξi = max{0, 1 − yiwT xi }. In a similar way,
in (21) for a given w the smallest feasible slack variable can be found by solving

ξ = max
c∈{0,1}l

{
1

l

l∑
i=1

ci − 1

l

l∑
i=1

ci yiw
T xi

}
. (22)

However, problem (22) can be decomposed into l problems, one for each component of the
vector c, i.e.,

min ξ =
l∑

i=1

max
ci∈{0,1}

{
1

l
ci − 1

l
ci yiw

T xi
}

=
l∑

i=1

max

{
0,

1

l
− 1

l
yiw

T xi
}

= min
1

l

l∑
i=1

ξi ,
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so that the objective values of problems (20) and (21) coincide at the optimum. This equiva-
lence result implies that it is possible to solve (21) instead of (20).

The advantage of this problem is that there is a single slack variable that is directly related
to the infeasibility, since if (w, ξ) satisfies all the constraints with precision ε, then the point
(w, ξ + ε) is feasible. This allows one to establish an effective and straightforward stopping
criterion related to the accuracy on the training loss.

The cutting plane algorithm for solving problem (21) is the following:

Cutting Plane Algorithm

Data. The training set TS, C , ε.

Inizialization. W = ∅.
Repeat

1. update (w, ξ) with the solution of

min
1

2
‖w‖2 + Cξ

s.t. ∀c ∈ W : 1

l
wT

l∑
i=1

ci y
i xi ≥ 1

l

l∑
i=1

ci − ξ
(23)

2. for i = 1, . . . , l

ci =
{
1 if yiwT xi < 1
0 otherwise.

end for
3. set W = W ∪ {c}.
Until ( 1

l

∑l
i=1 ci − 1

l

∑l
i=1 ci y

iwT xi ≤ ξ + ε )
Return (w, ξ)

This algorithm starts with an empty set of violated constraints, and then iteratively builds
a sufficient subset of the constraints of problem (21). Step 1 solves the problem with the
current set of constraints. The vector c computed at Step 2 corresponds to selecting the
constraint in (21) that requires the largest ξ to make it feasible given the current w, i.e., it
finds the most violated constraint. The stopping criterion implies that the algorithm stops
when the accuracy on the training loss is considered acceptable. Problem (23) can be solved
either by solving the primal or by solving the dual, with any training algorithm for SVM.

It can be shown that the algorithm terminates after at most max

{
2

ε
,
8CR2

ε2

}
iterations,

where R = maxi ‖xi‖, and this number also bounds the size of the working set W to a
constant that is independent on n and l. Furthermore, for a constant size of the working set
W , each iteration takes O(sl), where s is the number of nonzero features for each element
of the working set. This algorithm is thus extremely competitive when the problem is highly
sparse, and has been extended to handle structural SVM training in Joachims et al. (2009). It
is also possible to obtain a straightforward extension of this approach to non linear kernels,
defining a dual version of the algorithm. However, whereas the fixed number of iteration
properties does not change, the time complexity per iterationworsens significantly, becoming
O(m3+ml2)wherem is the number of constraints added in the primal. The idea in Joachims
and Yu (2009) is then to use arbitrary basis vectors to represent the learned rule, not only
the support vectors, in order to find sparser solutions and keep the iteration cost lower. In

123



Annals of Operations Research (2022) 314:15–47 27

particular, instead of using the Representer Theorem, setting w = ∑l
i=1 αi yiφ(xi ) and

considering the subspace F = span{φ(x1), . . . , φ(xl)}, they consider a smaller subspace
F ′ = span{φ(b1), . . . , φ(bk)} for some small k and the basis vectors bi are built during the
algorithm. In this setting, each iteration has time complexity at most O(m3 + mk2 + kl).

Finally in Hui et al. (2010) and Le et al. (2008) a bundle method is defined for regularized
riskminimization problems, that is shown to converge in O(1/ε) steps for linear classification
problems, and that is further optimized in Franc and Sonnenburg (2009) and Franc and
Sonnenburg (2008), where an optimized choice of the cutting planes is described.

6 Decomposition algorithms for the dual formulation

Let us consider the convex quadratic programming problem for SVM training in the case of
classification problems:

min
α

f (α) = 1
2α

T Qα − eTα

s.t . yTα = 0

0 ≤ α ≤ C,

(24)

whereα ∈ �l , l is the number of training data, Q is a l×l symmetric and positive semidefinite
matrix, e ∈ �l is the vector of ones, y ∈ {−1, 1}l , and C is a positive scalar. The generic
element qi j of Q is yi y j K (xi , x j ), where K (x, z) = φ(x)Tφ(z) is the kernel function related
to the nonlinear function φ that maps the data from the input space into the feature space.
We prefer to adopt here the symbol α (instead of λ as in (14)) for the dual variables, since it
is a choice of notation often adopted in the SVM literature.

The structure of problem (24) is very simple, but we assume that the number l of training
data is huge (as in many big data applications) and the Hessian matrix Q, which is dense,
cannot be fully stored so that standard methods for quadratic programming cannot be used.
Hence, the adopted strategy to solve the SVM problem is usually based on the decomposition
of the original problem into a sequence of smaller subproblems obtained by fixing subsets
of variables.

We remark that the need to design specific decomposition algorithms, instead of the well-
known block coordinate descentmethods, arises from the presence of the equality constraints
that, in particular, makes the convergence analysis difficult. The ”classical” decomposition
methods for nonlinear optimization, such as the successive over-relaxation algorithm and the
Jacobi and GaussSeidel algorithms (Bertsekas 1999), are applicable only when the feasible
set is the Cartesian product of subsets defined in smaller subspaces.

In a general decomposition framework, at each iteration k, the vector of variables αk is
partitioned into two subvectors (αk

W , αk
W

), where the index set W ⊂ {1, . . . , l} identifies the
variables of the subproblem to be solved and is called working set, and W = {1, . . . , l} \ W
(for notational convenience, we omit the dependence on k).

Starting from the current solution αk = (αk
W , αk

W
), which is a feasible point, the subvector

αk+1
W is computed as the solution of the subproblem

min
αW

f (αW , αk
W

)

yTWαW = −yT
W

αk
W

begineqnarray∗.5em] 0 ≤ αW ≤ C .

(25)
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The variables corresponding toW are unchanged, that is,αk+1
W

= αk
W
, and the current solution

is updated setting αk+1 = (αk+1
W , αk+1

W
). The general framework of a decomposition scheme

is reported below.

Decomposition framework

Data. A feasible point α0 (usually α0 = 0).
Inizialization. Set k = 0.
While ( the stopping criterion is not satisfied )
1. select the working set Wk ;
2. set W = Wk and compute a solution α∗

W of the problem (25);

3. set αk+1
i =

⎧⎪⎨
⎪⎩

α∗
i f or i ∈ W

αk
i otherwise;

4. set ∇ f (αk+1) = ∇ f (αk) + Q
(
αk+1 − αk

)
.

5. set k = k + 1.

end while
Return α∗ = αk

The choice α0 = 0 for the starting point is motivated by the fact that this point is a feasible
point and such that the computation of the gradient ∇ f (α0) does not require any element
of the matrix Q, being ∇ f (0) = −e. The cardinality q of the working set, namely the
dimension of the subproblem, must be greater than or equal to 2, due to the presence of the
linear constraint, otherwise we would have αk+1 = αk .

The selection rule of the working set strongly affects both the speed of the algorithm and
its convergence properties. In computational terms, the most expensive step at each iteration
of a decomposition method is the evaluation of the kernel to compute the columns of the
Hessianmatrix, corresponding to the indices in the working setW . These columns are needed
for updating the gradient.

We distinguish between:

– Sequential minimal optimization (SMO) algorithms, where the size of the working set is
exactly equal to two; and

– General decomposition algorithms, where the size size of the working set is strictly
greater than two.

In the sequelwewillmainly focus onSMOalgorithms, since they are themost used algorithms
to solve large quadratic programs for SVM training.

6.1 Sequential minimal optimization (SMO) algorithms

The decomposition methods usually adopted are the so-called “sequential minimal optimiza-
tion” (SMO) algorithms, since at each iteration they update theminimumnumber of variables,
that is two. At each iteration, an SMO algorithm requires the solution of a convex quadratic
programming of two variables with one linear equality constraint and box constraints. Note
that the solution of a subproblem in two variables of the above form can be analytically deter-
mined (and this is one of the reasons motivating the interest in defining SMO algorithms).
SMO algorithms were the first methods proposed for SVM training and the related literature
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is wide (see, e.g., Joachims 1999; Keerthi and Gilbert 2002; Lin 2001b; Osuna et al. 1997;
Platt 1999).

The analysis of SMO algorithms relies on feasible and descent directions having only two
nonzero elements. In order to characterize these directions, given a feasible point ᾱ, let us
introduce the following index sets

R(ᾱ) = L+(ᾱ) ∪U−(α) ∪ {i : 0 < ᾱi < C}

S(ᾱ) = L−(ᾱ) ∪U+(ᾱ) ∪ {i : 0 < ᾱi < C},
(26)

where

L+(ᾱ) = {i : ᾱi = 0, yi > 0}, L−(ᾱ) = {i : ᾱi = 0, yi < 0}

U+(ᾱ) = {i : ᾱi = C, yi > 0}, U−(ᾱ) = {i : ᾱi = C, yi < 0}.
Note that

R(ᾱ) ∩ S(ᾱ) = {i : 0 < ᾱi < C} R(ᾱ) ∪ S(ᾱ) = {1, . . . , l}.
The introduction of the index sets R(α) and S(α) allows us to state the optimality conditions
in the following form (see, e.g., Lucidi et al. 2007).

Proposition 3 A feasible point α∗ is a solution of (24) if and only if

max
i∈R(α�)

{
− (∇ f (α�))i

yi

}
≤ min

j∈S(α�)

{
− (∇ f (α�)) j

y j

}
. (27)

Given a feasible point ᾱ, which is not a solution of problem (24), a pair i ∈ R(ᾱ), j ∈ S(ᾱ)

such that {
− (∇ f (ᾱ))i

yi

}
>

{
− (∇ f (ᾱ)) j

y j

}

is said to be a violating pair.
Given a violating pair (i, j), let us consider the direction di, j with two nonzero elements

defined as follows

di, jh =
⎧⎨
⎩
1/yi if h = i
−1/y j if h = j
0 otherwise.

It can be easily shown that di, j is a feasible direction at ᾱ and we have∇ f (ᾱ)T di, j < 0, i.e.,
di, j is a descent direction. This implies that the selection of a violating pair of an SMO-type
algorithm implies a strict decrease of the objective function. However, the use of generic
violating pairs as working sets is not sufficient to guarantee convergence properties of the
sequence generated by a decomposition algorithm.

A convergent SMO algorithm can be defined using as indices of the working set those
corresponding to the“maximal violation” of the KKT conditions. More specifically, given
again a feasible point α which is not a solution of problem (24), let us define

I (α) =
{
i : i ∈ arg max

i∈R(α)

{
− (∇ f (α))i

yi

}}
J (α) =

{
j : j ∈ arg min

j∈S(α)

{
− (∇ f (α)) j

y j

}}

Taking into account the KKT conditions as stated in (27), a pair i ∈ I (α), j ∈ J (α) most
violates the optimality conditions, and therefore, it is said to be a maximal violating pair.
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Note that the selection of the maximal violating pair involves O(l) operations. An SMO-type
algorithm using maximal violating pairs as working sets is usually calledmost violating pair
(MVP) algorithm which is formally described below.

SMO-MVP Algorithm

Data. The starting point α0 = 0 and the gradient ∇ f (α0) = e.
Inizialization. Set k = 0.
While ( the stopping criterion is not satisfied )
1. select i ∈ I (αk), j ∈ J (αk), and set W = {i, j};
2. compute analytically a solution α∗ =

(
α�
i α�

j

)T
of (25);

3. set αk+1
h =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α∗
i f or h=i

α∗
j f or h=j

αk
h otherwise;

4. set ∇ f (αk+1) = ∇ f (αk) + (αk+1
i − αk

i )Qi + (αk+1
j − αk

j )Q j ;
5. set k = k + 1.

end while
Return α∗ = αk

The scheme requires storing a vector of size l (the gradient ∇ f (αk)) and to get two columns,
Qi and Q j , of the matrix Q.

We remark that the condition on the working set selection rule, i.e., i ∈ I (αk), j ∈ J (αk),
can be viewed as a Gauss-Soutwell rule, since it is based on the maximum violation of the
optimality conditions. It can be proved (see Lin 2001b, 2002a) that SMO-MVP Algorithm
is globally convergent provided that the Hessian matrix Q is positive semidefinite.

A usual requirement to establish convergence properties in the context of a decomposition
strategy is that

lim
k→∞

(
αk+1 − αk

)
= 0. (28)

Indeed, in a decomposition method, at the end of each iteration k, only the satisfaction of the
optimality conditions with respect to the variables associated to W is ensured. Therefore, to
get convergence towards KKT points, it may be necessary to ensure that consecutive points,
which are solutions of the corresponding subproblems, tend to the same limit point.

It can be proved (Lin 2002a) that SMO algorithms guarantee property (28) (the proof fully
exploits that the subproblems are convex, quadratic problems into two variables).

The global convergence result of SMO algorithms can be obtained even using working
set rules different from that selecting the maximal violating pair. For instance, the so-called
constant-factor violating pair rule (Chen et al. 2006) guarantees global convergence proper-
ties of the SMO algorithm adopting it, and requires to select any violating pair u ∈ R(αk),
v ∈ S(αk) such that

(∇ f (αk))u

yu
− (∇ f (αk))v

yv
≤ σ

(
(∇ f (αk))i

yi
− (∇ f (αk)) j

y j

)
, (29)

123



Annals of Operations Research (2022) 314:15–47 31

where 0 < σ ≤ 1 and (i, j) is a maximal violating pair.
The SMO-MVP algorithm is globally convergent and is based on first order information,

since the maximal violating pair is related to the minimization of the first order approxima-
tion:

f (αk + d) � f (αk) + ∇ f (αk)T d.

An SMO algorithm using second order information has been proposed in Fan et al. (2005),
where the designed working set selection rule takes into account that f is quadratic and we
can write

f (αk + d) = f (αk) + ∇ f (αk)T d + 1

2
dT Qd. (30)

In particular, the working set selection rule of Fan et al. (2005) exploits second order infor-
mation using (30), requires O(l) operations, and provides a pair defining the working set
which is a constant-factor violating pair. Then, the resulting SMO algorithms, based on sec-
ond order information, is globally convergent. Other convergent SMO algorithms, not based
on the MVP selection rule, have been proposed in Chang et al. (2000), Lin et al. (2009) and
Lucidi et al. (2007).

We conclude the analysis of SMO algorithms focusing on the stopping criterion. To this
aim let us introduce the functions m(α), M(α):

m(α) =

⎧⎪⎪⎨
⎪⎪⎩

max
h∈R(α)

− (∇ f (α))h

yh
if R(α) �= ∅

−∞ otherwise

M(α) =

⎧⎪⎪⎨
⎪⎪⎩

min
h∈S(α)

− (∇ f (α))h

yh
if S(α) �= ∅

+∞ otherwise,

where R(α) and S(α) are the index sets previously defined. From the definitions ofm(α) and
M(α), and usingProposition 3, it follows that ᾱ is solution of (24) if andonly ifm(ᾱ) ≤ M(ᾱ).

Let us consider a sequence of feasible points {αk} converging to a solution ᾱ. At each
iteration k, if αk is not a solution then (using again Proposition 3) we have m(αk) > M(αk).

Therefore, one of the adopted stopping criteria is

m(αk) ≤ M(αk) + ε, (31)

where ε > 0.
Note that the functionsm(α) andM(α) are not continuous. Indeed, even assumingαk → ᾱ

for k → ∞, it may happen that R(αk) �= R(ᾱ) or S(αk) �= S(ᾱ) for k sufficiently large.
However, it can be proved (Lin 2002b) that an SMO Algorithm using the constant-factor
violating pair rule generates a sequence {αk} such that m(αk) − M(αk) → 0 for k → ∞.
Hence, for any ε > 0, an SMO algorithm of this type satisfies the stopping criterion (31) in
a finite number of iterations. To our knowledge, this finite convergence result has not been
proved for other asymptotically convergent SMO algorithms not based on the constant-factor
violating pair rule.
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6.2 General decomposition algorithms

In this section we briefly present decomposition algorithms using working sets of size greater
than two. To this aim we will refer to the decomposition framework previously defined. The
distinguishing features of the decomposition algorithms are:

(a) the working set selection rule; and
(b) the iterative method used to solve the quadratic programming subproblem.

The dimension of the subproblems is usually on the order of ten variables. A working set
selection rule, based on the violation of the optimality conditions of Proposition 3, has been
proposed in Joachims (1999) and analyzed in Lin (2001b). The rule includes, as particular
case, the one selecting the most violating pair and used by SMO-MVP algorithm. Let q ≥ 2
be an even integer defining the size of the working set W . The working set selection rule is
the following.

(i) Select q/2 indices in R(αk) sequentially so that
{
− (∇ f (αk))i1

yi1

}
≥

{
− (∇ f (αk))i2

yi2

}
≥ . . . ≥

{
− (∇ f (αk))iq/2

yiq/2

}

with i1 ∈ I (αk).
(ii) Select q/2 indices in S(αk) sequentially so that{

− (∇ f (αk)) j1

y j1

}
≤

{
− (∇ f (αk)) j2

y j2

}
≤ . . . ≤

{
− (∇ f (αk)) jq/2

y jq/2

}

with j1 ∈ J (αk).
(iii) Set W = {i1, i2, . . . , iq/2, j1, j2, . . . , jq/2}.
Note that theworking set rule employed by the SMO-MVPalgorithm is a particular case of the
above rule, with q = 2. The asymptotic convergence of the decomposition algorithm based
on the above working set rule and on the computation of the exact solution of the subproblem
has been established in Lin (2001b) under the assumption that the objective function is
strictly convex with respect to block components of cardinality less than or equal to q . This
assumption is used to guarantee condition (28), but it may not hold, for instance, if some
training data are the same. A proximal point-based modification of the subproblem has been
proposed in Palagi and Sciandrone (2005), and the global convergence of the decomposition
algorithm using the above working set selection rule has been proved without strict convexity
assumptions on the objective function.

Remark 2 We observe that the above working set selection rule (see (i–ii)) requires consider-
ing subproblem variables thatmostly violate (in a decreasing order) the optimality conditions.
This guarantees global convergence, but the degree of freedom for selecting the whole work-
ing set is limited. An open theoretical question concerns the convergence of a decomposition
algorithm where the working set, besides the most violating pair, includes other arbitrary
indices. This issue is very important to exploit the use of a caching technique that allocates
some memory (the cache) to store the recently used columns of the Hessian matrix, thus
avoiding in some cases the recomputation of these columns. To minimize the number of
kernel evaluations and to reduce the computational time, it is convenient to select working
sets containing as many elements corresponding to columns stored in the cache memory
as possible. However, to guarantee the global convergence of a decomposition method, the
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working set selection cannot be completely arbitrary. The study of decomposition methods
specifically designed to couple both the theoretical aspects of convergence and an efficient
use of a caching strategy has motivated some works (see, e.g., Glasmachers and Igel 2006;
Lin et al. 2009; Lucidi et al. 2009).

Concerning point (b), we observe that a closed form of the solution of the subproblem whose
dimension is greater than two is not available, and this motivates the need to adopt an iterative
method. In Joachims (1999) a primal-dual interior-point solver is used to solve the quadratic
programming subproblems.

Gradient projection methods are suitable methods since they consist in a sequence of
projections onto the feasible region that are inexpensive due to the special structure of the
feasible set of (25). In fact, a projection onto the feasible set can be performed by efficient
algorithms like those proposed in Dai and Fletcher (2006), Kiwiel (2008), and Pardalos
and Kovoor (1990). Gradient projection methods for SVM have been proposed in Dai and
Fletcher (2006) and Serafini and Zanni (2005).

Finally, the approach proposed in Mangasarian and Musicant (1999), where the square
of the bias term is added to the objective function, leads by the Wolfe dual to a quadratic
programming problem with only box constraints, called Bound-constrained SVM formula-
tion (BSVM). In Hsu and Lin (2002), this simpler formulation has been considered, suitable
working set selection rules have been defined, and the software TRON (Lin and Morè 1999),
designed for large sparse bound-constrained problems, has been adapted to solve small (say
of dimension 10) fully dense subproblems.

In Hsieh et al. (2008), by exploiting the bound-constrained formulation for the specific
class of linear SVM, a dual coordinate descent algorithm has been defined where the dual
variables are updated once at a time. The subproblem is solved analytically, the algorithm con-
vergeswith convergence rate at least linear, and obtains an ε-accurate solution in O(log(1/ε))
iterations. A parallel version has been defined in Chiang et al. (2016). Also in Glasmachers
and Dogan (2013) an adaptive coordinate selection has been introduced that does not select
all coordinates equally often for optimization. Instead, the relative frequencies of coordinates
are subject to online adaptation leading to a significant speedup.

7 Interior point methods

Interior point methods are a valuable option for solving convex quadratic optimization prob-
lems of the form

min
z

1
2 z

T Qz + cT z

s.t. Az = b
0 ≤ z ≤ u.

(32)

Primal-dual interior point methods consider at each step a perturbed version of the (necessary
and sufficient) primal dual optimality conditions,

Az = b (33)

−Qz + AT λ + s − v = −c (34)

ZSe = μe (35)

(U − Z)Ve = μe (36)
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where S = Diag(s),V = Diag(v),Z = Diag(z),U = Diag(u), and solve this system
by applying the Newton method, i.e., compute the search direction (Δz,Δλ,Δs,Δv) by
solving: ⎛

⎜⎜⎝
A 0 0 0

−Q AT I −I
S 0 Z 0

−V 0 0 U − Z

⎞
⎟⎟⎠

⎛
⎜⎜⎝

Δz
Δλ

Δs
Δv

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

−rz
−rλ
−rs
−rv

⎞
⎟⎟⎠ (37)

for suitable residuals. The variables Δs and Δv can be eliminated, obtaining the augmented
system: (−(Q + Θ−1) AT

A 0

) (
Δz
Δλ

)
=

(−rc
−rb

)
(38)

whereΘ ≡ Z−1S+(U−Z)−1V and rc and rb are suitable residuals. FinallyΔz is eliminated,
ending up with the normal equations, that require calculating

M ≡ A(Q + Θ−1)−1AT (39)

and factorizing it to solve MΔλ = −r̂b.
The advantage of interior point methods is that the number of iterations is almost inde-

pendent of the size of the problem, whereas the main computational burden at each iteration
is the solution of system (38). IPMs have been applied to linear SVM training in Ferris and
Munson (2002), Fine and Scheinberg (2001), Gertz and Griffin (2010), Goldfarb and Schein-
berg (2008), Woodsend and Gondzio (2009) and Woodsend and Gondzio (2011). The main
differences are the formulations of the problem considered and the linear algebra tools used
in order to solve the corresponding system (38).

In Ferris and Munson (2002), different versions of the primal-dual pair for SVM are
considered: the standard one, given by (5) and (8), is one where the bias term is included in
the objective function:

min
w,b,ξ

= 1

2
‖w, b‖2 + C

l∑
i=1

ξi

s.t. yi
[
wT xi + b

] − 1 + ξi ≥ 0 i = 1, . . . , l
ξi ≥ 0 i = 1, . . . , l

(40)

with corresponding dual

min
α

1
2α

T Y XT XYα + 1
2α

T Y eeT Yα − eTα

0 ≤ α ≤ Ce,
(41)

and

min
w,b,ξ

= 1

2
‖w, b‖2 + C

2
‖ξ‖22

s.t. yi
[
wT xi + b

] − 1 + ξi ≥ 0 i = 1, . . . , l
ξi ≥ 0 i = 1, . . . , l

(42)

with corresponding dual

min
α

1
2C αTα + 1

2α
T Y XT XYα + 1

2α
T Y eeT Yα − eTα

α ≥ 0.
(43)
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The simplest situation for IPMs is problem (43), where the linear system (38) simplifies into

(C + RHRT )Δλ = r1, (44)

with C = 1
2C I + Θ−1, H = I and R = Y [XT − e]. The matrix C + RRT can be easily

inverted using the Sherman-Morrison-Woodbury formula (Golub and Van Loan 1996):

(C + RHRT )−1 = C−1 − C−1R
(
H−1 + RTC−1R

)−1
RTC−1 (45)

where C−1 and H−1 are diagonal and positive definite and the matrix H−1 + RTC−1R is
of size n and needs to be computed only once per iteration. The approach can be extended
by using some (slightly more complex) variations of this formula for solving (41), whereas
for solving problem (8) some proximal point is needed.

In Gertz and Griffin (2010), an interior point method is defined for solving the primal
problem (5). In this case, we consider the dual variables α associated to the classification
constraints with the corresponding slack variables s, and μ the multipliers associated to the
nonnegativity constraints on the ξ vector. In this case, the primal dual optimality conditions
lead to the following reduced system:⎛

⎝ I 0 −XT Y
0 0 yT

Y X −y Ω

⎞
⎠

⎛
⎝Δw

Δb
Δα

⎞
⎠ =

⎛
⎝−rw

−rb
−rΩ

⎞
⎠ , (46)

where Ω = Diag()−1S + Diag(¯)−1Diag(¸). By row elimination, system (46) can be trans-
formed into ⎛

⎝I + XT YΩ−1Y X −XT YΩ−1y 0
−yTΩ−1Y X yTΩ−1y 0

Y X −y Ω

⎞
⎠

⎛
⎝Δw

Δb
Δα

⎞
⎠ =

⎛
⎝−r̂w

−r̂b
−r̂Θ

⎞
⎠ . (47)

Finally, this system can be reduced into

(I + XT YΩ−1Y X − 1

yTΩ−1y
yTd yd)Δw = −r̃w (48)

Δb = 1

σ
(−r̂b + yTd Δw) (49)

where yd = XT YΩ−1y. The main cost in solving this system is computing and factorizing
the matrix I + XT YΩ−1Y X − 1

yT Ω−1 y
yTd yd . In Gertz and Griffin (2010), the idea is to solve

system (48) by a preconditioned linear conjugate gradient that requires only a mechanism
for computing matrix-vector products of the form Mx , and they define a new preconditioner
exploiting the structure of problem (5). Themethod is applicable when the number of features
n is relatively large. Both the methods proposed in Ferris and Munson (2002) and Gertz and
Griffin (2010) exploit the Sherman-Morrison-Woodbury formula, but it has been shown (see
Goldfarb and Scheinberg 2008) that this approach leads to numerical issues, especially when
the matrixΘ (orΩ) is ill-conditioned and if there is near degeneracy in the matrix XY , which
occurs if there are multiple samples close to the separating hyperplane.

In Goldfarb and Scheinberg (2008), an alternative approach is proposed for solving prob-
lem (8) (note that in this sectionwe stick to the notationα instead of λ) based on Product Form
Cholesky Factorization. Here it is assumed that the matrix Y XT XY can be approximated
by a low rank matrix VV T , and an efficient and numerically stable Cholesky Factorization
of the matrix VV T + Diag()−1S + (Diag(Ce) − Diag())−1Z is computed. The advantage
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with respect to methods using the SMW formula is that the LDLT Cholesky factorization
of the IPM normal equation matrix enjoys the property that the matrix L is stable even if D
becomes ill-conditioned.

A different approach to overcoming the numerical issues related to the SMW formula
is the one described in Woodsend and Gondzio (2011), where a primal-dual interior point
method is proposed based on a different formulation of the training problem. In particular,
the authors consider the dual formulation (8), and include the substitution

w = XYα

in order to get the following primal-dual formulation:

min
w,α

1
2w

Tw − eTα

s.t. w − XYα = 0
yTα = 0
0 ≤ α ≤ Ce.

(50)

In order to apply standard interior point methods, that require all the variables to be bounded,
some bounds are added on the variable w, so that the problem to be solved becomes:

min
w,α

1
2w

Tw − eTα

s.t. w − XYα = 0
yTα = 0
0 ≤ w ≤ uw

0 ≤ α ≤ Ce.

(51)

The advantage of this formulation is that the objective functionmatrix Q is sparse, since it only
has a non zero diagonal block corresponding to w (that is the identity matrix). Specializing
the matrix M in (39) for this specific problem, if we define

Θ−1
w = (W−1Sw + (Diag(uw) − W)−1Vw)

Θ−1
α = (Diag()−1S + (Diag(Ce) − Diag())−1V)

we get

M = A
(
Q + Θ−1)−1

AT

=
((

In + Θ−1
w

) + XYΘαY XT −XYΘα y
−yTΘwY XT yTΘα y

)
. (52)

Building the matrix M is the most expensive operation, of orderO(l(n+1)2)while inverting
the matrix is of order O((n + 1)3). In order to get the optimal hyperplane, it is possible to
directly get the bias b since it is the element of λ corresponding to the constraint yTα = 0.

Themethod uses as stopping condition the stability of the set of support vectors monitored
by measuring the change in the angle φ of the normal to the hyperplane between iterations i
and i − 1:

cos(φ) = (w(i−1))Tw(i)

‖w(i−1)‖‖w(i)‖ . (53)

Furthermore the number of iterations of IPMs can be reduced by using multiple correctors
(that all use the same factorization of M) to improve the centrality of the current point, and
also an accurate estimate of the bounds on w can help to speed up the approach.
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Aparallel version of this algorithm has been introduced inWoodsend andGondzio (2009).

8 Software

Most of themethods described in this survey are open source and can be downloaded.Herewe
report for the reader’s convenience a list of the algorithms and the link to the corresponding
software.

Algorithms for solving SVM in the primal:

1. the stochastic sub-gradient methods described in Shalev-Shwartz et al. (2011) are
implemented in the software PEGASOS that can be downloaded from
https://www.cs.huji.ac.il/~shais/code/index.html

2. The cutting plane algorithm proposed in Joachims (2006) is implemented in the
software SVMper f that can be downloaded from http://www.cs.cornell.edu/people/
tj/svm_light/svm_perf.html

Interior point Methods:

1. The methods described in Ferris and Munson (2002); Gertz and Griffin (2010) are
part of the software for quadratic programming OOQP downloadable at http://pages.
cs.wisc.edu/~swright/ooqp/

2. The method described in Woodsend and Gondzio (2011) is implemented in the soft-
ware SVM-OOPS that can be downloaded at http://www.maths.ed.ac.uk/ERGO/
svm-oops/

Decomposition methods for solving SVM in the dual:

1. SMO-type algorithms and general decomposition algorithms have been implemented
both in the software SVMlight that can be downloaded at http://svmlight.joachims.
org/ and in the software LIBSVM that can be downloaded at https://www.csie.ntu.
edu.tw/~cjlin/libsvm/index.html.

2. An efficient library for linear classification is implemented in the software LIBLIN-
EAR that can be downloaded at https://www.csie.ntu.edu.tw/~cjlin/liblinear/

9 Concluding remarks

In this paper we have presented an overview of the nonlinear optimization methods for
SVM training, which typically involves convex programming problems, whose difficulties
are related to the dimensions, i.e., to the number of training instances, and/or to the number of
features. We have considered different equivalent formulations, pointing out the main theo-
retical and computational difficulties of the problems. We have described the most important
and used optimization methods for SVM training, and we have discussed how the algo-
rithms have been specifically designed and adapted to take into account the structure of the
considered problems.

In our analysiswe have limited ourselves tomodels and algorithms for binary classification
since by nature SVM are mainly binary classifiers. Although the paper is a survey, in a field
as vast as SVM we had to leave out several related important topics, such as multiclass-
classification, one-class SVM, support vector regression, semi-supervised SVM, and online
incremental SVM. However, we believe that most of the concepts, models and algorithms
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developed for SVM binary classification may represent a sound and useful basis to analyze
the other classes of SVM models.
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Appendix A: Proof of existence and uniqueness of the optimal hyper-
plane

The idea underlying the proof of existence and uniqueness of the optimal hyperplane is based
on the following steps:

– for each separating hyperplane H(w, b), there exists a separating hyperplane H(ŵ, b̂)
such that

1

‖w‖ ≤ ρ(w, b) ≤ 1

‖ŵ‖;

– the above condition implies that problem (2), i.e.,

max
w∈�n ,b∈� ρ(w, b)

s.t. wT xi + b ≥ 1, ∀xi ∈ A
wT x j + b ≤ −1, ∀x j ∈ B

admits solution provided that the following problem

max
w∈�n ,b∈�

1
‖w‖

s.t. wT xi + b ≥ 1, ∀xi ∈ A
wT x j + b ≤ −1, ∀x j ∈ B

(54)

admits solution;
– problem (54) is obviously equivalent to

min
w∈�n ,b∈� ‖w‖2
s.t. wT xi + b ≥ 1, ∀xi ∈ A

wT x j + b ≤ −1, ∀x j ∈ B;
(55)

– then we prove that (55) admits a unique solution, which is also the unique solution of
(2).

Lemma 1 Let H(ŵ, b̂) be a separating hyperplane. Then

ρ(ŵ, b̂) ≥ 1

‖ŵ‖ .
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Proof Since

|ŵT x� + b̂| ≥ 1, ∀x� ∈ A ∪ B,

it follows

ρ(ŵ, b̂) = min
x�∈A∪B

{
|ŵT x� + b̂|

‖ŵ‖

}
≥ 1

‖ŵ‖ .

��
Lemma 2 Given any separating hyperplane H(ŵ, b̂), there exists a separating hyperplane
H(w̄, b̄) such that

ρ(ŵ, b̂) ≤ ρ(w̄, b̄) = 1

‖w̄‖ . (56)

Moreover there exist two points x+ ∈ A and x− ∈ B such that

w̄T x+ + b̄ = 1
w̄T x− + b̄ = −1

(57)

Proof Let x̂ i ∈ A and x̂ j ∈ B be the closest points to H(ŵ, b̂), that is, the two points such
that

d̂i = |ŵT x̂ i + b̂|
‖ŵ‖ ≤ |ŵT xi + b̂|

‖ŵ‖ , ∀xi ∈ A

d̂ j = |ŵT x̂ j + b̂|
‖ŵ‖ ≤ |ŵT x j + b̂|

‖ŵ‖ , ∀x j ∈ B

(58)

from which it follows

ρ(ŵ, b̂) = min{d̂i , d̂ j } ≤ 1

2
(d̂i + d̂ j ) = ŵT (x̂ i − x̂ j )

2‖ŵ‖ . (59)

Let us consider the numbers α and β such that

αŵT x̂ i + β = 1
αŵT x̂ j + β = −1

(60)

that is, the numbers

α = 2

ŵT (x̂ i − x̂ j )
, β = − ŵT (x̂ i + x̂ j )

ŵT (x̂i − x̂ j )
.

It can be easily verified that 0 < α ≤ 1. We will show that the hyperplane H(w̄, b̄) ≡
H(αŵ, β) is a separating hyperplane for the sets A and B, and it is such that (56) holds.
Indeed, using (58), we have

ŵT xi ≥ ŵT x̂ i , ∀xi ∈ A
ŵT x j ≤ ŵT x̂ j , ∀x j ∈ B.

As α > 0, we can write

αŵT xi + β ≥ αŵT x̂ i + β = 1, ∀xi ∈ A
αŵT x j + β ≤ αŵT x̂ j + β = −1, ∀x j ∈ B

(61)
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from which we get that w̄ and b̄ satisifies (1), and hence, that H(w̄, b̄) is a separating
hyperplane for the sets A and B.

Furthermore, taking into account (61) and the value of α, we have

ρ(w̄, b̄) = min
x�∈A∪B

{ |w̄T x� + b̄|
‖w̄‖

}
= 1

‖w̄‖ = 1

α‖ŵ‖ = ŵT (x̂ i − x̂ j )

2‖ŵ‖ .

Condition (56) follows from the above equality and (59). Using (60) we obtain that (57) holds
with x+ = x̂ i and x− = x̂ j . ��
Proposition 4 The following problem

min ‖w‖2
t.c. wT xi + b ≥ 1, quad∀xi ∈ A

wT x j + b ≤ −1, ∀x j ∈ B
(62)

admits a unique solution (w�, b�).

Proof Let F the feasible set, that is,

F = {(w, b) ∈ �n × � : wT xi + b ≥ 1,∀xi ∈ A, wT x j + b ≤ −1,∀x j ∈ B}.
Given any (wo, bo) ∈ F , let us consider the level set

Lo = {(w, b) ∈ F : ‖w‖2 ≤ ‖wo‖2}.
The set Lo is closed, and we will show that is also bounded. To this aim, assume by
contradiction that there exists an unbounded sequence {(wk, bk)} belonging to Lo. Since
‖wk‖ ≤ ‖wo‖,∀k, we must have |bk | → ∞. For any k we can write

wT
k x

i + bk ≥ 1, ∀xi ∈ A
wT
k x

j + bk ≤ −1, ∀x j ∈ B

and hence, as |bk | → ∞, for k sufficiently large, we have ‖wk‖2 > ‖wo‖2, and this contra-
dicts the fact that {(wk, bk)} belongs to Lo. Thus Lo is a compact set.

Weirstrass’s theorem implies that the function ‖w‖2 admits a minimum (w�, b�) on Lo,
and hence, on F . As consequence, (w�, b�) is a solution of (62).
In order to prove that (w�, b�) is the unique solution, by contradiction assume that there
exists a pair (w̄, b̄) ∈ F , (w̄, b̄) �= (w�, b�), such that ‖w̄‖2 = ‖w�‖2. Suppose w̄ �= w�.
The set F is convex, so that

λ(w�, b�) + (1 − λ)(w̄, b̄) ∈ F, ∀λ ∈ [0, 1].
Since ‖w‖2 is a strictly convex function, for any λ ∈ (0, 1) it follows

‖λw� + (1 − λ)w̄‖2 < λ‖w�‖2 + (1 − λ)‖w̄‖2.

Gettingλ = 1/2,which corresponds to consider the pair (w̃, b̃) ≡
(
1

2
w� + 1

2
w̄,

1

2
b� + 1

2
b̄

)
,

we have (w̃, b̃) ∈ F and

‖w̃‖2 <
1

2
‖w�‖2 + 1

2
‖w̄‖2 = ‖w�‖2,

and this contradicts the fact that (w�, b�) is a global minimum. Therefore, we must have
w̄ ≡ w�.
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Assume b� > b̄ (the case b� < b̄ is analogous), and consider the point x̂ i ∈ A such that

w�T x̂ i + b� = 1

(the existence of such a point follows from (57) of Lemma 2). We have

1 = w�T x̂ i + b� = w̄T x̂ i + b� > w̄T x̂ i + b̄

and this contradicts the fact that w̄T xi + b̄ ≥ 1, ∀xi ∈ A. As consequence, we must have
b̄ ≡ b�, and hence the uniqueness of the solution is proved. ��
Proposition 5 Let (w�, b�) be the solution of (62). Then, (w�, b�) is the unique solution of
the following problem

max ρ(w, b)
t.c. wT xi + b ≥ 1, ∀xi ∈ A

wT x j + b ≤ −1, ∀x j ∈ B
(63)

.

Proof We observe that (w�, b�) is the unique solution of the problem

max 1
‖w‖

t.c. wT xi + b ≥ 1, ∀xi ∈ A
wT x j + b ≤ −1, ∀x j ∈ B.

Lemma 1 and Lemma 2 imply that, for any separating hyperplane H(w, b), we have

1

‖w‖ ≤ ρ(w, b) ≤ 1

‖w�‖

and hence, for the separating hyperplane H(w�, b�) we obtain ρ(w�, b�) = 1

‖w�‖ , which
implies that H(w�, b�) is the optimal separating hyperplane. ��

Appendix B: TheWolfe dual and its properties

Consider the convex problem

min f (x)
s.t. g(x) ≤ 0

h(x) = 0
(64)

with f : �n → � convex and continuously differentiable, g : �n → �m convex and
continuously differentiable, and h : �n → �p affine functions. Then its Wolfe dual is

max
x,λ,μ

L(x, λ, μ)

s.t. ∇x L(x, λ, μ) = 0
λ ≥ 0,

(65)

where L(x, λ, μ) = f (x) + λT g(x) + μT h(x).

Proposition 6 Let x∗ be a global solution of problem (64) with multipliers (λ∗, μ∗). Then it
is also a solution of problem (65) and there is zero duality gap, i.e., f (x∗) = L(x∗, λ∗, μ∗).
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Proof The point (x∗, λ∗, μ∗) is clearly feasible for problem (65) since it satisfies the KKT
conditions of problem (64). Furthermore, by complementarity ((λ∗)T g(x∗) = 0) and feasi-
bility (h(x∗) = 0)

L(x∗, λ∗, μ∗) = f (x∗) + (λ∗)T g(x∗) + (μ∗)T h(x∗) = f (x∗)

so that there is zero duality gap. Furthermore, for any λ ≥ 0, μ ∈ �p , by the feasibility of
x∗, we have

L(x∗, λ∗, μ∗) = f (x∗) ≥ f (x∗) + λT g(x∗) + μT h(x∗) = L(x∗, λ, μ). (66)

By the convexity assumptions on f and g, the nonnegativity of λ and by the linearity of h,
we get that L(·, λ, μ) is a convex function in x and hence, for any feasible (x, λ, μ), we can
write

L(x∗, λ, μ) ≥ L(x, λ, μ) + ∇x L(x, λ, μ)T (x∗ − x) = L(x, λ, μ), (67)

where the last equality derives from the constraints of problem (65). By combining (66) and
(67), we get

L(x∗, λ∗, μ∗) ≥ L(x, λ, μ) for all (x, λ, μ) feasible for problem(65)

and hence (x∗, λ∗, μ∗) is a global solution of problem (65). ��
A stronger result can be proved when the primal problem is a convex quadratic programming
problem defined by (6).

Proposition 7 Let f (x) = 1
2 x

T Qx + cT x, and suppose that the matrix Q is symmetric and
positive semidefinite. Let (x̄, λ̄) be a solution of Wolfe’s dual (7). Then, there exists a vector
x� (not necessarily equal to x̄) such that

(i) Q(x� − x̄) = 0;
(ii) x� is a solution of problem (6); and
(iii) x∗ is a global minimum of (6) with associated multipliers λ̄.

Proof First, we show how in this case problem (7) is a convex quadratic programming prob-
lem. In particular, problem (7) becomes for the quadratic case:

max
x,λ

1

2
xT Qx + cT x + λT (Ax − b) (68)

Qx + c + AT λ = 0 (69)

λ ≥ 0. (70)

Multiplying the constraints (68) by xT we get

xT Qx + cT x + xT AT λ = 0,

which implies that the objective function (68) can be rewritten as

max−1

2
xT Qx + cT x − λT b = −min

1

2
xT Qx + λT b,

which shows how problem (68) is actually a convex quadratic optimization problem. For
this problem, the KKT conditions are necessary and sufficient for global optimality, and, if
we denote by v the multipliers of the equality constraints (69) and by z the multipliers of
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the constraints (70), we get that there must exist multipliers v and z such that the following
conditions hold;

Qx̄ − Qv = 0 (71)

b − Av − z = 0 (72)

zT λ̄ = 0 (73)

z ≥ 0 (74)

Qx̄ + c + AT λ̄ = 0 (75)

λ̄ ≥ 0. (76)

The expression of z can be derived by constraints (72), and substituted in (73) and (74),
implying:

Av − b ≤ 0 (77)

λ̄T (Av − b) = 0. (78)

Furthermore by subtracting (71) from (75), we get

Qv + c + AT λ̄ = 0. (79)

By combining (79), (78), (77) and (76) we get that the pair (v, λ̄) satisfies the KKT conditions
of problem (6), and hence setting x∗ = v we get the thesis, keeping into account that point
(i) derives from (71). ��

Appendix C: Kernel characterization

Proposition 8 Let K : X × X → � be a symmetric function. Function K is a kernel if and
only if the l × l matrix

(
K (xi , x j )

)l
i, j=1

=
⎛
⎜⎝

K (x1, x1) . . . K (x1, xl)
...

K (xl , x1) . . . K (xl , xl)

⎞
⎟⎠

is positive semidefinite for any set of training vectors {x1, . . . , xl}.
Proof necessity Symmetry derives from the symmetry of the function K . To prove pos-

itive semidefiniteness we look at the quadratic form, for any v ∈ �l :

vT Kv =
l∑

i=1

l∑
j=1

viv j K (xi , x j ) =
l∑

i=1

l∑
j=1

viv j 〈φ(xi ), φ(x j )〉 =
〈

l∑
i=1

viφ(xi ),

l∑
j=1

v jφ(x j )

〉
= 〈z, z〉 ≥ 0

sufficiency Assume ⎛
⎜⎝

K (x1, x1) . . . K (x1, xl)
...

K (xl , x1) . . . K (xl , xl)

⎞
⎟⎠ � 0 (80)
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We need to prove that there exists a linear space H, a function φ : X → H and a scalar
product 〈·, ·〉 defined on H such that k(x, y) = 〈φ(x), φ(y)〉 for all x, y ∈ X .
Consider the linear space

H = lin {K (·, y) : y ∈ X}
with the generic element f (·)

f =
m∑
i=1

αi K (·, xi )

for any m ∈ N , with αi ∈ � for i = 1, . . . ,m. Given two elements f , g ∈ H, with
g(·) = ∑m′

j=1 β j K (·, x j ), define the function ρ : H × H → � defined as

ρ( f , g) =
m∑
i=1

m′∑
j=1

αiβ j K (xi , x j )

It can be shown that the function ρ is a scalar product in the space H, by showing that
the following properties hold:

(i) ρ( f , g) = ρ(g, f )
(ii) ρ( f 1 + f 2, g) = ρ( f 1, g) + ρ( f 2, g)
(iii) ρ(λ f , g) = λρ( f , g)
(iv) ρ( f , f ) ≥ 0 and ρ( f , f ) = 0 implies f = 0

The first three properties are a consequence of the definition of ρ and can be easily
verified. We need to show property (iv). First, we observe that, given f 1, . . . , f p in
H the matrix with elements ρst = ρ( f s, f t ) is symmetric (thanks to property (i)) and
positive semidefinite. Indeed,

p∑
i=1

p∑
j=1

γiγ jρi j =
p∑

i=1

p∑
j=1

γiγ jρ( f i , f j ) = ρ

⎛
⎝ p∑

i=1

γi f
i ,

p∑
j=1

γ j f
j

⎞
⎠ ≥ 0

This implies in turn that all principal minors have non negative determinant. Consider
any 2 × 2 principal minor, with elements ρi j = ρ( f i , f j ). The nonnegativity of the
determinant, and the symmetry of the matrix imply

ρ( f i , f i )ρ( f j , f j ) − ρ( f i , f j )ρ( f j , f i ) = ρ( f i , f i )ρ( f j , f j ) − ρ( f i , f j )2 ≥ 0

so that

ρ( f i , f j )2 ≤ ρ( f i , f i )ρ( f j , f j ) (81)

We note that, setting m′ = 1, g(·) = k(·, x), f (x) can be written as

f (x) =
m∑
i=1

αi K (x, xi ) = ρ(K (·, x), f )

with K (·, x) ∈ H. Furthermore, for any x, y ∈ X , we get

ρ(K (·, x), K (·, y)) = K (x, y)
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Using (81) with f i = K (·, x) and f j = f (x) we get

f (x)2 = ρ(K (·, x), f ) ≤ ρ( f i , f i )ρ( f j , f j ) = ρ(K (·, x), K (·, x))ρ( f , f )

= K (x, x)ρ( f , f )

that implies, thanks to (80), both ρ( f , f ) ≥ 0 and that if ρ( f , f ) = 0, then f (x)2 ≤ 0
for all x ∈ X and hence f = 0.

��
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