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a b s t r a c t

Multi-class classification is an important and challenging research topic with many real-life appli-
cations. The problem is much harder than the classical binary classification, especially when the
given data set is imbalanced. Hidden nonlinear patterns in the data set can further complicate
the task of multi-class classification. In this paper, we propose a kernel-free least squares twin
support vector machine for multi-class classification. The proposed model employs a special fourth
order polynomial surface, namely the double well potential surface, and adopts the "one-verses-all"
classification strategy. An ℓ2 regularization term is added to accommodate data sets with different
levels of nonlinearity. We provide some theoretical analysis of the proposed model. Computational
results using artificial data sets and public benchmarks clearly show the superior performance of the
proposed model over other well-known multi-class classification methods, in particular for imbalanced
data sets.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Multi-class classification has many real-life applications such
s disease diagnosis [1], company credit ratings [2] and ma-
hinery faults detection [3]. As a powerful binary classification
echnique, the support vector machine (SVM) [4] has been ex-
ended for multi-class classification with different multi-class
lassification strategies, such as the ‘‘one-versus-all" (OVA) strat-
gy. As one of the commonly-used strategies, the idea of OVA is
imple but powerful [5]. However, the SVM with OVA strategy
ay not well handle the multi-class imbalanced data sets, which
ften exist in real-life problems. Recently, another effective bi-
ary classification method — the twin SVM (TSVM) model [6] was
roposed and has also been extended for multi-class classifica-
ion. Since TSVM captures each class of data individually instead
f directly finding a separation hyperplane between classes, it
ay be more effective for classifying imbalanced data sets. Fur-

hermore, the idea of least squares SVM model [7] can be adopted
o improve the computational efficiency of TSVM. Therefore, we
re motivated to propose a state-of-the-art fast and accurate
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gmedhin@ncsu.edu (N. Medhin).
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TSVM-based model for classifying multi-class imbalanced data
sets.

Proposed in late 1990’s, the soft-margin SVM model [4] sep-
arates the data points into two classes by generating a separa-
tion hyperplane, while maximizing the margin between the two
classes and minimizing the misclassification errors. As an alterna-
tive SVM model for binary classification, TSVM is formulated as
two convex quadratic programming (QP) problems [6]. It gener-
ates two nonparallel hyperplanes and its main idea is to let each
hyperplane stay close to one class of data and keep away from
the other class of data points as far as possible. The computational
efficiency of TSVM is further improved by the least squares TSVM
(LSTSVM) model proposed by Kumar et al. [8]. Combining the idea
of TSVM and the least squares SVM model [7], the LSTSVM model
generates the non-parallel separation hyperplanes by solving the
systems of linear equations.

While TSVM and LSTSVM work effectively for the data set in
which each class is linearly recognizable, they may fail for the
data set with each class being distributed in nonlinear patterns.
To strengthen the capability for nonlinear cases, the TSVM model
equipped with kernels (KTSVM) [6] and the corresponding least
squares KTSVM (LSKTSVM) [8] were proposed. Both KTSVM and
LSKTSVM classify the data points after mapping them on a higher
dimensional feature space. The KTSVM and the LSKTSVM models

work well for some nonlinear cases and have achieved much
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uccess in many applications, but there are some disadvantages.
irst, to the best of our knowledge, there is no general principle
o pre-select a suitable kernel for a given data set. Moreover, the
erformance of these kernel-based TSVM model depends heavily
n the parameters of the kernels.
Recently, a kernel-free quadratic TSVM (QTSVM) model and

corresponding least squares QTSVM (LSQTSVM) were proposed
or binary classification in [9]. Without using kernels, two
uadratic surfaces are directly generated, such that each surface
s closer to one class of data points and keeps far away from the
ther class of data points. Although the QTSVM and LSQTSVM
odels work well for some cases, the quadratic surfaces they pro-
uce may not well handle the data set which is highly nonlinearly
istributed. A recently-proposed special category of degree-4
olynomial function — double well potential (DWP) function [10,
1] attracts our attention. As a fourth degree polynomial function,
he DWP function has the form in which a quadratic term is
mbedded in a quadratic function. The DWP surface has been
dopted in [12] for nonlinear binary classification. By taking
dvantage of its flexibility, we are motivated to build a kernel-
ree TSVM model that utilizes DWP surfaces to handle the data
ith high nonlinearity.
Binary classification methods can be extended to solve multi-

lass classification problems based on multi-class classification
trategies. One of the most popular strategies for multi-class
lassification is the one-versus-all (OVA) strategy. For the OVA
trategy, K binary classifiers are constructed to solve a K -class
lassification problem. And each binary classifier is obtained by
sing the binary classification method to distinguish one class of
ata points from the remaining classes of data points. There are
ome other commonly-used multi-class classification strategies
roposed in literature, such as one-versus-one (OVO), all-versus-
ne (AVO) and so forth. Even though the OVA strategy is concep-
ually simple, it was proved to be effective [5] and relatively more
fficient.
Another difficulty in multi-class classification is the issue of

mbalanced data, which has been defined as a challenge in data
ining [13]. Recall that, linear TSVM models have been extended

or multi-class classification, but may not well handle the data
ets with nonlinear patterns. Although kernels can be utilized
or those nonlinear cases, they have shortages. The recently-
roposed kernel-free QTSVM models overcome the drawbacks
f the kernel-based TSVM models, however, they may not ef-
ectively capture highly nonlinear data patterns. In addition, the
win SVM model generates a surface for each class, it may capture
n imbalanced data set better than other SVM models. Hence, in
his paper, we are motivated to propose a novel ℓ2 regularized
east squares kernel-free TSVMmodel based on DWP surfaces and
he OVA strategy for multi-class classification, which is denoted
s reg-LSDWPTSVM. Computational experiments are conducted
o investigate the effectiveness and efficiency of the proposed
odel along with other benchmark models. Besides, additional
omputational experiments are conducted to investigate the per-
ormance of the reg-LSDWPTSVM model on imbalanced data. The
ain contributions of this paper are summarized as follows.

1. For multi-class classification, the computational results
indicate the superior performance of the proposed reg-
LSDWPTSVMmodel over other benchmark models in terms
of classification accuracy and efficiency. Especially, it has
increasing dominance over other benchmark models as the
data becomes more imbalanced.

2. The proposed reg-LSDWPTSVM model combines the idea
of least squares kernel-free TSVM with quartic surfaces.
It may save the efforts from selecting a proper kernel
and tuning related kernel parameters, which avoids the
2

shortages induced by kernel-based TSVM models. An ℓ2
regularization term with the trade-off parameter is added
to adjust the impact of the fourth order term of the DWP
surfaces, which helps the proposed model to handle data
sets with different levels of nonlinearity.

3. The proposed reg-LSDWPTSVM model is theoretically and
numerically investigated in this paper. It is capable of cap-
turing the embedded nonlinearity of a data set and it out-
performs those kernel-based TSVM models and kernel-free
TSVM models in literature. In addition, the computational
results show the increasingly dominant performance of the
proposed model in terms of accuracy as the number of
data features increases. The computational efficiency of the
proposed reg-LSDWPTSVM model is also verified.

The rest of the paper is organized as follows. We briefly intro-
duce some notations and some related SVM models in Section 2.
In Section 3, we introduce the DWP function and propose a least
squares DWP-based TSVM model with ℓ2 regularization. Some
theoretical properties of the proposed model are also studied.
The computational experiments are conducted to test the pro-
posed model on some artificial and public benchmark data sets
in Section 4. Section 5 concludes the paper.

2. Preliminary

In this section, we first introduce the notations that are used
through out this paper in Section 2.1. Then a brief review of some
related SVM and TSVM models is provided in Section 2.2.

2.1. Notations

Throughout this paper, scalars are denoted by lower case
letters, vectors are denoted by bold lower case letters, and ma-
trices are denoted by bold upper case letters. The n-dimensional
real space is denoted by Rn and the n-dimensional nonnegative
orthant is denoted by Rn

+
. The m by n zero matrix is denoted by

0m×n, the n-dimensional identity matrix is denoted by In. The all-
one matrix of size m × n is denoted by 1m×n, and the diagonal
matrix with vector c = [c1, . . . , cn]T on its diagonal is denoted
by Diag(c1, . . . , cn). The set of all n × n real symmetric matrices
is denoted by Sn. ∀B ∈ Sn, we write B ≻ 0 if matrix B is
positive definite, and B ⪰ 0 if matrix B is positive semidefinite.
∀A ∈ Rm×n, we denote the ith row of A as Ai• and denote the jth
column of A as A•j.

Let r ≜ n(n+1)
2 . For any symmetric matrix A ∈ Sn, all informa-

ion of A is included in the upper triangular r elements [14–16].
Hence, the half-vectorization of the symmetric matrix A is defined
in [16] as the following:

hvec(A) ≜ [A11, . . . , A1n, A22, . . . , A2n, . . . , An−1,n−1, An−1,n, Ann]
T

∈ Rr .

For any vector a = [a1, . . . , an]T ∈ Rn, the vector of the cross
terms between its elements is denoted by lvec(a) [14–16]:

lvec(a)

≜

[
1
2
a1a1, a1a2, . . . , a1an,

1
2
a2a2, a2a3, . . . , a2an, . . . ,

1
2
anan

]T
∈ Rr .

Notice that 1
2a

TAa = lvec(a)Thvec(A), hence a quadratic term
with respective to a can be substituted by a linear term.

For any supervised classification problem, the K -class data set
an be mathematically denoted by

=

{(
x(i), y(i)

) ⏐⏐ x(i) ∈ Rn, y(i) ∈ {1, . . . , K }

}
, (1)
i=1,...,N
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where N is the amount of data points, n is the number of features,
x(i) ≜ [x(i)1 , . . . , x(i)n ]

T
∈ Rn is the vector of n feature values of point

i, and y(i) is the label of point x(i). For class k, denote its index set
as Ik ≜ {k1, . . . , kNk} where Nk is the number of data points in
class k. Also, denote the data subset of class k as Dk such that

Dk ≜
{
x(i) ∈ Rn

⏐⏐⏐i ∈ Ik
}

. (2)

From definition, it is obvious that
∑K

k=1 Nk = N and
⋃K

k=1 I
k

=

{1, . . . ,N}. Let X ≜ [x(1), . . . , x(N)
]. For further convenience, we

define data matrices Xk and X-k.

Xk ≜
[
x(k1), . . . , x(kNk )

]
∈ Rn×Nk , ∀kp ∈ Ik, p = 1, . . . ,Nk.

(3)

X-k ≜
[
x(j1), . . . , x(jN-k )

]
∈ Rn×(N-k),

∀jp ∈ I-k, p = 1, . . . ,N-k.
(4)

where N-k ≜ N − Nk and I-k ≜ {1, . . . ,N} \ Ik.
Given a data set of two classes and the predicted labels by

a classifier, all data points can be partitioned into four groups:
true positive (TP), false positive (FP), true negative (TN) and false
negative (FN). Denoted as R, the true positive rate is defined by
the following:

R ≜
TP

TP + FN
(5)

2.2. Some related SVM models

In this subsection, we provide a brief introduction of SVM and
TSVM models. The ordinary soft-margin SVM model is introduced
in Section 2.2.1. We introduce the TSVM and LSTSVM models in
Section 2.2.2. In Section 2.2.3, the QTSVM and LSQTSVM models
are introduced.

2.2.1. Soft-margin SVM
The soft margin SVM (SSVM) model was originally proposed

in [17] for binary classification. Given a binary data set D defined
n (1) with K = 2, and let ŷ(i) ≜ 2y(i) − 1 (i.e. ŷ(i) ∈ {−1, 1}),
the SSVM model is formulated as the following convex quadratic
programming (QP) problem:

min
1
2
∥u∥

2
2 + C

N∑
i=1

ξi

s.t. ŷ(i)
(
uTx(i) + d

)
⩾ 1 − ξi, ∀i = 1, . . . ,N

u ∈ Rn, d ∈ R, ξ ∈ RN
+
.

(SSVM)

where C > 0 is the penalty parameter for data points. It produces
a hyperplane H = {x ∈ Rn

|uTx + d = 0} while maximizing
the margin between two classes of points [4]. Also, the soft-
margin idea [4] is adopted by introducing the slack vector ξ =

[ξ1, . . . , ξN ]
T

∈ RN .
However, most of the data sets may be more appropriately

separated by a nonlinear classifier instead of a linear one. It can
be done by SSVM equipped with a kernel (KSVM) [4], which can
be formulated as the following:

min
1
2
∥v∥2

2 + C
N∑
i=1

ξi

s.t. ŷ(i)
(
vTφ(x(i)) + d

)
⩾ 1 − ξi, ∀i = 1, . . . ,N

v ∈ Rm, d ∈ R, ξ ∈ RN
+
.

(KSVM)

where φ maps data point x(i) from Rn to Rm (n < m) and
(x(i), x(j)) = φ(x(i))Tφ(x(j)) is a kernel for any x(i) and x(j). The
3

ost popular kernel used in literature is the radial basis function
RBF) kernel (also called Gaussian kernel). The idea of kernel-
ased SVM model is to first map the data points onto a higher
imensional feature space and then separate the mapped data
oints with a hyperplane in the higher dimensional feature space.
Notice that, (KSVM) is also a convex QP problem, it is impor-

ant to study its dual problem, which can be formulated as the
ollowing:

min
1
2

N∑
i=1

N∑
j=1

K(x(i), x(j))ŷ(i)ŷ(j)αiαj −

N∑
i=1

αi

s.t.
N∑
i=1

αiŷ(i) = 0

0 ⩽ αi ⩽ C, i = 1, . . . ,N.

(DKSVM)

here C is the given parameter of penalties. The details of deriva-
ion for this dual problem can be found in [17]. Even though
he dual gap is zero from the duality theory, the dual problem
DKSVM) is simpler as it has only one linear equality constraint
ith the upper bounds of variables. Hence, the (KSVM) model

s usually trained from its dual side. One of the most popular
pproaches proposed in literature for solving its dual problem is
he sequential minimal optimization (SMO) algorithm [18], which
as been adopted in software packages such as LIBSVM [19].

.2.2. TSVM and LSTSVM
The twin SVM (TSVM) model proposed in [6] for binary clas-

ification by using two non-parallel hyperplanes. Given a binary
ata set D as defined by (1) with K = 2, the binary classification

task can be accomplished by solving two QP problems

min
1
2

XT
1u1 + d11N1

2
2 + C11T

N-1
ξ1

s.t. −
(
XT

-1u1 + d11N-1

)
⩾ 1N-1 − ξ1

u1 ∈ Rn, d1 ∈ R, ξ1 ∈ RN-1
+ .

(TSVM1)

min
1
2

XT
2u2 + d21N2

2
2 + C21T

N-2
ξ2

s.t. −
(
XT

-2u2 + d21N-2

)
⩾ 1N-2 − ξ2

u2 ∈ Rn, d2 ∈ R, ξ2 ∈ RN-1
+ .

(TSVM2)

where C1, C2 are given positive parameters. For k = 1, 2, the
first term in the objective function of problem (TSVMk) is the
functional margin of class k and the inequality constraint depicts
that all the data points in the other class stay at least one unit
away from hyperplane {x ∈ Rn

|uT
kx + dk = 0}. The slack variable

ξk is added to measure the errors of some data points that are
closer than this minimum distance of one. (TSVMk) generates the
hyperplane by minimizing the functional margin and a penalty
term of the errors. Let (u∗

1, d
∗

1, ξ
1∗

) and (u∗

2, d
∗

2, ξ
2∗

) be optimal
solution tuples to problems (TSVM1) and (TSVM2), respectively.
Denote the hyperplane produced by model (TSVM1) as H1 ≜
{x ∈ Rn

|xTu∗

1 + d∗

1 = 0} and the hyperplane produced by model
(TSVM2) as H2 ≜ {x ∈ Rn

|xTu∗

2+d∗

2 = 0}. Then a new data sample
x ∈ Rn is assigned to class k if the closest hyperplane it lies to is
Hk for k = 1, 2. In general, the new data sample will be assigned
to class k̂ such that

k̂ = argmin
k=1,2

{⏐⏐xTu∗

k + d∗

k

⏐⏐} . (6)

TSVM can also be equipped with RBF kernel to capture the
nonlinearity of the data. Define the kernel matrix K(A,B) with
its ij-th element (K(A,B))ij ≜ K(A•i, B•j), where K is the kernel.
The kernel-based twin SVM (KTSVM) for binary classification is
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([
ormulated as the following:

min
1
2
∥K(X1,X)ũ1 + d11N1∥

2
2 + C11T

N-1
ξ1

s.t. −
(
K(X-1,X)ũ1 + d11N-1

)
⩾ 1N-1 − ξ1

ũ1 ∈ RN , d1 ∈ R, ξ1 ∈ RN-1
+ .

(KTSVM1)

min
1
2
∥K(X2,X)ũ2 + d21N2∥

2
2 + C21T

N-2
ξ2

s.t. −
(
K(X-2,X)ũ2 + d21N-2

)
⩾ 1N-2 − ξ2

ũ2 ∈ RN , d2 ∈ R, ξ2 ∈ RN-2
+ .

(KTSVM2)

where C1, C2 are given positive parameters. Denote the opti-
mal solution tuples to problems (KTSVM1) and (KTSVM2) as
(ũ∗

1, d
∗

1, ξ
1∗

) and (ũ∗

2, d
∗

2, ξ
2∗

), respectively. A new data point x will
be assigned to class k̂ if the kth kernel surface is closest to x.

k̂ = argmin
k=1,2

{⏐⏐K(x,X)ũ∗

k + d∗

k

⏐⏐} . (7)

The efficiency of the TSVM model has been enhanced by
modifying the inequality constraints as the equality constraints,
so that a least squares TSVM (LSTSVM) model is proposed in [8].

min
1
2

XT
1u1 + d11N1

2
2 +

C1

2
ξ1

T
ξ1

s.t. XT
-1u1 + d11N-1 = 1N-1 − ξ1

u1 ∈ Rn, d1 ∈ R, ξ1 ∈ RN-1 .

(LSTSVM1)

min
1
2

XT
1u2 + d21N2

2
2 +

C2

2
ξ2

T
ξ2

s.t. XT
-2u2 + d21N-2 = 1N-2 − ξ2

u2 ∈ Rn, d2 ∈ R, ξ2 ∈ RN-2 .

(LSTSVM2)

where C1, C2 are given positive parameters. Denote the opti-
mal solution tuples to problems (LSTSVM1) and (LSTSVM2) as
u∗

1, d
∗

1, ξ
1∗

) and (u∗

2, d
∗

2, ξ
2∗

), respectively. For k = 1, 2, let v∗

k =

u∗

k
d∗

k

]
, Ak =

[
Xk

1T
Nk

]
, A-k =

[
X-k

1T
N-k

]
and Gk = AkAT

k + CkA-kAT
-k, then

the optimal solutions have analytical forms:

v∗

k = CkG−1
k A-k1N-k

ξk
∗

=
(
IN-k − CkAT

-kG
−1
k A-k

)
1N-k

(8)

where k = 1, 2. The optimal solution in (8) requires the inverse of
matrix Gk. Although Gk ⪰ 0, it may be singular or ill-conditioned.
To avoid this situation, a small perturbation term ϵI is added to
Gk. The hyperplane Hk for kth class is determined by (8). The
assignment of a new data point x is the same as defined in (6).

Similarly to KTSVM, the LSTSVM model can be equipped with
a kernel as well. LSKTSVM can be formulated as the following:

min
1
2
∥K(X1,X)ũ1 + d11N1∥

2
2 +

C1

2
ξ1

T
ξ1

s.t. K(X-1,X)ũ1 + dk1N-1 = 1N-1 − ξ1

ũ1 ∈ RN , d1 ∈ R, ξ1 ∈ RN-1 .

(LSKTSVM1)

min
1
2
∥K(X2,X)ũ2 + d21N2∥

2
2 +

C2

2
ξ2

T
ξ2

s.t. K(X-2,X)ũ2 + dk1N-2 = 1N-2 − ξ2

ũ2 ∈ RN , d2 ∈ R, ξ2 ∈ RN-2 .

(LSKTSVM2)

where C1, C2 are given positive parameters. Denote the opti-
mal solution tuples to problems (LSKTSVM1) and (LSKTSVM2) as
(ũ∗

, d∗, ξ1
∗

) and (ũ∗
, d∗, ξ2

∗

), respectively. For k = 1, 2, let v∗
=
1 1 2 2 k w

4

[
ũ∗

k
d∗

k

]
, Bk =

[
K(Xk,X)

1T
Nk

]
, B-k =

[
K(X-k,X)

1T
N-k

]
, then optimal solutions

have analytical forms:

v∗

k = Ck
(
BkBT

k + CkB-kBT
-k

)−1 B-k1N-k

ξk
∗

=

(
IN-k − CkBT

-k

(
BkBT

k + CkB-kBT
-k

)−1 B-k

)
1N-k

(9)

Similarly, an small perturbation term ϵI is usually added to BkBT
k+

CkB-kBT
-k to avoid the possible singularity. The assignment of a

new data point x is based on Eq. (7).

2.2.3. QTSVM and LSQTSVM
Although the KTSVM and LSKTSVM work well for both linear

and some nonlinear types of data, they may have some dis-
advantages [9]. First, there is no general principle to select a
suitable kernel for a given data set. Besides, the performance of
KTSVM and LSKTSVM models is highly related to the parameters
in the kernel [20]. To overcome these drawbacks, Gao et al. [9]
proposed a quadratic kernel-free TSVM (QTSVM) model and a
quadratic kernel-free least squares TSVM (LSQTSVM) model for
binary classification. In these models, quadratic surfaces are pro-
duced instead of hyperplanes for binary classification. For k =

1, 2, the QTSVM model for binary classification can be formulated
as the following:

min
1
2

∑
i∈Ik

⏐⏐⏐⏐12x(i)TWkx(i) + x(i)Tbk + ck

⏐⏐⏐⏐2 + Ck

N-k∑
j=1

ξ k
j

s.t. −

(
1
2
x(kj)TWkx(kj) + x(kj)Tbk + ck

)
⩾ 1 − ξ k

j ,

∀kj ∈ I-k j = 1, . . . ,N-k

Wk ∈ Sn, bk ∈ Rn, ck ∈ R, ξk ∈ RN−k
+ .

(QTSVMk)

where Ck > 0 is a given parameter. Denote the optimal solution
tuple to problem (QTSVMk) as (W∗

k, b
∗

k, c
∗

k ), the quadratic surface
produced by (QTSVMk) for class k is Qk ≜ {x ∈ Rn

|
1
2x

TW∗

kx +

xTb∗

k + c∗

k = 0}.
Define wk ≜ hvec(Wk), s(i) ≜ lvec(x(i)) (∀i = 1, . . .N), matrices

Sk and S-k as the following:

Sk ≜
[
s(k1), . . . , s(kNk )

]
∈ R

n(n−1)
2 ×Nk , ∀kp ∈ Ik, p = 1, . . . ,Nk.

(10)

S-k ≜
[
s(j1), . . . , s(jN-k )

]
∈ R

n(n−1)
2 ×N-k , ∀jp ∈ I-k, p = 1, . . . ,N-k.

(11)

To make (QTSVMk) simple to be solved, the matrix variable
Wk can be vectorized and model (QTSVMk) can be reformulated
as the following [9,14]:

min
1
2

(
wT

kSkS
T
kwk + bT

kXkXT
kbk + c2k

)
+ Ck1N-k

T ξk

s.t. −
(
ST-kwk + XT

-kbk + ck1N-k

)
⩾ 1N-k − ξk

wk ∈ R
n(n+1)

2 , bk ∈ Rn, ck ∈ R, ξk ∈ RN-k
+ .

(QTSVM′k)

where Ck > 0 is a given parameter. Denote the optimal solution
tuple to problem (QTSVM′k) as (w∗

k, b
∗

k, c
∗

k ), and a new data point
x will be assigned to class k̂ such that

k̂ = argmin
k=1,2

{⏐⏐⏐⏐12xTW∗

kx + xTb∗

k + c∗

k

⏐⏐⏐⏐} . (12)

here W∗
= hvec−1(w∗).
k k
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Adopting the idea of LSTSVM, the LSQTSVM model was also
proposed in [21] for binary classification as follows.

min
1
2

∑
i∈Ik

⏐⏐⏐⏐12x(i)TWkx(i) + x(i)Tbk + ck

⏐⏐⏐⏐2 +
Ck

2

N-k∑
j=1

(
ξ k
j

)2
s.t.

1
2
x(kj)TWkx(kj) + x(kj)Tbk + ck = 1 − ξ k

j ,

∀kj ∈ I-k j = 1, . . . ,N-k

Wk ∈ Sn, bk ∈ Rn, ck ∈ R, ξk ∈ RN−k .

(LSQTSVMk)

here k = 1, 2. And it can be reformulated as the following QP
roblem:

min
1
2

(
wT

kSkS
T
kwk + bT

kXkXT
kbk + c2k

)
+

Ck

2
ξk

T
ξk

s.t. ST-kwk + XT
-kbk + ck1N-k = 1N-k − ξk

wk ∈ R
n(n+1)

2 , bk ∈ Rn, ck ∈ R, ξk ∈ RN-k
+ .

(LSQTSVM′k)

where Ck > 0 is a given parameter. Denote the optimal solution
to (LSQTSVM′k) as (w∗

k, b
∗

k, c
∗

k ), the assignment of a new data point

is based on Eq. (12). Let v∗

k ≜

[
w∗

k
b∗

k
c∗

k

]
and define matrices

Dk ≜

⎡⎣ Sk
Xk

1T
Nk

⎤⎦ , D-k ≜

⎡⎣ S-k
X-k

1T
N-k

⎤⎦ , Lk ≜ DkDT
k + CkD-kDT

-k. (13)

where Sk and S-k are defined by (10) and (11), respectively.
(v∗

k, ξ
k∗

) has the following analytical form:

v∗

k = CkL−1
k D-k1N-k

ξk
∗

=
(
IN-k − CkDT

-kL
−1
k D-k

)
1N-k

(14)

imilarly, a small perturbation term ϵI is usually added to Lk to
void the possible singularity.

. Twin SVM model with DWP surface

As we introduced before, both (QTSVM′k) and (LSQTSVM′k)
roduce a quadratic surface for kth class of data points. They
ork well for some nonlinear cases, but still cannot capture the
igh nonlinearity inside the given data set. In this section, we
irst introduce the DWP function in Section 3.1. In Section 3.2, we
ropose the kernel-free TSVM and LSTSVM models based on the
WP surfaces. Some theoretical analysis of the proposed models
re provided in Section 3.2.

.1. Double well potential function

The DWP function is a special type of fourth order polynomial
unctions defined as follows. It attracts considerable attention
n the field of quantum mechanics, where the DWP function
as used as the numerical approximation to the generalized
inzburg–Landau functional [21].

efinition 3.1 (DWP Function). Let P be a real-value function
defined on Rn such that

P(x) =
1
2

(
1
2
∥Bx − c∥2

2 − d
)2

+
1
2
xTAx + bTx + q. (15)

here B ∈ Rm×n, c ∈ Rm, d ∈ R, A ∈ Sn, b ∈ Rn, q ∈ R.

In addition to the high nonlinearity, the DWP function has
he form of embedding a quadratic term in a quadratic function.
5

Hence, it is more tractable than other 4th order polynomial
functions. Motivated by its high nonlinearity and amenability, we
utilize the DWP surfaces to capture the hidden nonlinearity inside
the data and improve the classification accuracy.

Given a DWP function P , and any data point (x(i), y(i)) ∈ D
enoted by (1) , define

(i) ≜
1
2
∥Bx(i) − c∥2

2 − d. (16)

Define s(i) ≜ lvec(x(i)), wB ≜ hvec(BTB), wBc ≜ cTB and
d ≜ 1

2 c
T c − d, then we have ζ (i)

= s(i)TwB − x(i)TwBc + cd. Define
z (i) ≜ [s(i)T , x(i)T , 1]T and wζ ≜ [wT

B , w
T
Bc, cd]

T . Therefore,

P(x(i)) = P̃
([

z (i)
x(i)

])
≜

1
2
z (i)Twζ wζ

T z (i) +
1
2
x(i)TAx(i) + bTx(i) + q.

(17)

here function P̃ : R
n(n+1)

2 +2n+1
→ R has a quadratic term with

respect to z (i) on R
n(n+1)

2 +n+1 and another quadratic term with
respect to x(i) on Rn. With the similar vectorization procedure,
denote l ≜ n(n+1)

2 + n + 1, ml ≜
l(l+1)

2 and

wW ≜ hvec(wζ w
T
ζ ) ∈ Rml ,

wA ≜ hvec(A) ∈ Rn(n+1)/2,

η(i) ≜ lvec(z (i)) ∈ Rml .

(18)

Consequently, P(x(i)) equals to a linear function Pl with respect
to η(i), s(i) and x(i) in Rml+l−1, i.e.,

P(x(i)) = Pl

⎛⎝⎡⎣η(i)

s(i)
x(i)

⎤⎦⎞⎠ ≜ η(i)TwW + s(i)TwA + x(i)Tb + q. (19)

n other words, we have following result:

emma 3.1. A DWP function in Rn is equivalent to a linear function
in Rml+l−1, where ml =

l(l+1)
2 and l = n(n+1)

2 + n + 1.

Remark. In Pl, the coefficient wW keeps the information of
the embedded quadratic term and the coefficient wA keeps the
quadratic term of the original DWP function.

With the definition in (18), ∀i ∈ {1, . . . ,N}, let H ≜
[η(1), . . . , η(N)

] and define

Hk ≜
[
η(k1), . . . , η(kNk )

]
∈ Rn×Nk , ∀kp ∈ Ik, p = 1, . . . ,Nk.

(20)

H-k ≜
[
η(j1), . . . , η(jN-k )

]
∈ Rn×N-k , ∀jp ∈ I-k, p = 1, . . . ,N-k.

(21)

In addition, define matrix Mn as the following:

Mn ≜

[
Iml 0ml×l

0ml×l 0l×l

]
∈ R(ml+l)×(ml+l) (22)

3.2. DWPTSVM & LSDWPTSVM with ℓ2 regularization for multi-class
classification

In this subsection, we first propose a kernel-free TSVM model
by directly using DWP surfaces for multi-class classification with
OVA strategy [22], which is denoted as DWPTSVM. Then we
propose a least squares twin SVM model based on DWPTSVM.

The idea of DWPTSVM is to find DWP surfaces S1, . . . , SK such
that the data points in class k stays as close to S as possible,
k
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here k = 1, . . . , K . Given a data set D as denoted in (1) with K
classes of data, a multi-class classifier based on K DWP surfaces,
can be obtained by solving K problems. For k = 1, . . . , K , the kth
problem (DWPTSVMk) can be formulated as the following:

min
1
2

∑
i∈Ik

⏐⏐⏐⏐⏐12
(
1
2
∥Bkx(i) − ck∥2

2 − dk

)2

+
1
2
x(i)TAkx(i) + bT

kx
(i)

+ qk

⏐⏐⏐⏐⏐
2

+ Ck

N-k∑
j=1

ξ k
j

s.t. −

(
1
2

(
1
2
∥Bkx(kj) − ck∥2

2 − dk

)2

+
1
2
x(kj)TAkx(kj) + bT

kx
(kj) + qk

)
⩾ 1 − ξ k

j ,

∀kj ∈ I-k j = 1, . . . ,N-k

Bk ∈ Rm×n, ck ∈ Rm, dk ∈ R,

Ak ∈ Sn, bk ∈ Rn, qk ∈ R, ξk ∈ RN-k
+ .

(DWPTSVMk)

where Ck > 0 is a given parameter. Model (DWPTSVMk) may not
be easily solved since there are matrix variables in this model.
Moreover, as a quartic polynomial surface, the DWP surface may
overfit the real-life training data set. Recall that, the DWP function
can be equivalently reformulated as a linear function by (19). In
addition, an ℓ2 regularization term δk

2 ∥wW∥
2
2 is added to over-

ome the overfitting problem, where δk > 0 (k = 1, . . . , K ) is a
iven parameter. Hence, model (DWPTSVMk) can be reformulated
s the following model (reg-DWPTSVM′k):

min
1
2

(
wT

WHkHT
kwW + wT

ASkS
T
kwA + bTXkXT

kb + q2Nk
)

+
δk

2
∥wW∥

2
2 + Ck1T

N-k
ξk

s.t. −
(
HT

-kwW + ST-kwA + XT
-kb + q1N-k

)
⩾ 1N-k − ξk

wW ∈ Rml , wA ∈ R
n(n+1)

2 , b ∈ Rn, q ∈ R, ξk ∈ RN-k
+ .

(reg-DWPTSVM′k)

where Ck and δk are given positive parameters. Model (reg-
DWPTSVM′k) can be simplified as follows. Define matrices Ek and
Λk as the following:

Ek ≜

⎡⎢⎣
Hk
Sk
Xk

1T
Nk

⎤⎥⎦ , E-k ≜

⎡⎢⎣
H-k
S-k
X-k

1T
N-k

⎤⎥⎦ (23)

and let vk = [wT
W , wT

A, b
T , q]T , then model (reg-DWPTSVM′k) can

be reformulated as the following form:

min
1
2
vT
k

(
EkET

k + δkMn
)
vk + Ck1T

N-k
ξk

s.t. − ET
-kvk ⩾ 1N-k − ξk

vk ∈ Rml+l, ξk ∈ RN-k
+ .

(reg-DWPTSVM′′k)

where Mn is defined by Eq. (22), Ck and δk are given positive
parameters. The existence of the optimal solution, denoted as
(v∗

k, ξ
k∗

), is shown in the following theorem.

Theorem 3.2. For any given data set D as defined in (1), Ck > 0
and δk > 0, there exists an optimal solution to (reg-DWPTSVM′′k),
which achieves a finite optimum.

Proof. Since EkET
k ⪰ 0 and Mn ≻ 0, (reg-DWPTSVM′′k) is a

convex QP problem. For any v̂ ∈ Rml+l, let ξ̂ k
= max{0, 1 −
k j

6

ET
•jv̂k} for j = 1, . . . ,N-k. Then it is obvious that (v̂k, ξ̂

k
=

[ξ̂ k
1 , . . . , ξ̂

k
N-k

]
T ) solves (reg-DWPTSVM′′k). Moreover, the objec-

tive function is bounded below by zero. Thus, the optimal solu-
tion to problem (reg-DWPTSVM′′k) exists and it achieves a finite
optimum. □

A new data point x will be assigned to class k̂ if

k̂ = argmin
k=1,...,K

{⏐⏐[ηT , sT , xT , 1]v∗

k

⏐⏐} . (24)

where s = lvec(x) and η = lvec(z) with z = [sT , xT , 1]T .
To improve the efficiency of (reg-DWPTSVM′′k), we propose

the following kernel-free least squares TSVM with ℓ2 regulariza-
tion, by incorporating the least squares idea of LSTSVM.

min
1
2

(
wT

WHkHT
kwW + wT

ASkS
T
kwA + bTXkXT

kb + q2Nk
)

+
δk

2
∥wW∥

2
2 +

Ck

2
ξk

T
ξk

s.t. HT
-kwW + ST-kwA + XT

-kb + q1N-k = 1N-k − ξk

wW ∈ Rml , wA ∈ R
n(n+1)

2 , b ∈ Rn, q ∈ R, ξk ∈ RN-k
+ .

(reg-LSDWPTSVM′k)

where Ck and δk are given positive parameters. Similarly, let vk =

[wT
W , wT

A, b
T , q]T , problem (reg-LSDWPTSVM′k) can be reformu-

lated as the following:

min
1
2
vT
k

(
EkET

k + δkMn
)
vk +

Ck

2
ξk

T
ξk

s.t. ET
-kvk = 1N-k − ξk

vk ∈ Rml+l, ξk ∈ RN-k
+ .

(reg-LSDWPTSVM′′k)

where Mn is defined by Eq. (22). Ck and δk are given positive
parameters. Denote the optimal solution as (v∗

k, ξ
k∗

), then the
assignment of a new data point x is based on Eq. (24).

Define matrix Pk such that

Pk ≜ EkET
k + δkMn + E-kET

-k. (25)

Notice that, matrix Pk is positive semi-definite, so
(reg-LSDWPTSVM′′k) is a convex QP problem.

Theorem 3.3. Assume Pk ≻ 0, then there exists a unique optimal
solution (v∗

k, ξ
k∗

) to problem (reg-LSDWPTSVM′′k) such that

v∗

k = CkP−1
k E-k1N-k

ξk
∗

=
(
IN-k − CkET

-kP
−1
k E-k

)
1N-k .

(26)

The proof of Theorem 3.3 is in Appendix.
However, the matrix Pk can be singular in some special cases.

Even though the matrix yielded by the given data set D is positive
definite in most cases, Pk can be ill-conditioned. A small pertur-
bation term ϵI is usually added to avoid the possible singular or
ill-conditioned matrix Pk.

Theorem 3.4. ∀ϵ > 0, consider the following QP problem:

min
1
2
vT
k

(
EkET

k + δkMn + ϵIml+l
)
vk +

Ck

2
ξk

T
ξk

s.t. ET
-kvk = 1N-k − ξk

vk ∈ Rml+l, ξk ∈ RN-k
+ .

(reg-LSDWPTSVM′′k
ϵ )

where Mn is defined by Eq. (22). Ck and δk are given positive
parameters. Then the optimal solution exists and it is unique. Besides,
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able 1
bbreviations and solvers of tested models.
Model Abbreviation Solver/Package Parameters

Logistic regression LR Scikit-learn –
Decision tree DT Scikit-learn –
Kernel (RBF kernel) SVM KSVM LIBSVM (C, γ )
Kernel (RBF kernel) twin SVM KTSVM Gurobi (Ck, γk)
Least squares kernel (RBF kernel) twin SVM LSKTSVM – (Ck, γk)
Quadratic surface twin SVM QTSVM Gurobi Ck
Least squares quadratic surface twin SVM LSQTSVM – Ck
Double well potential twin SVM with regularization reg-DWPTSVM Gurobi (Ck, δk)
Least squares double well potential twin SVM with regularization reg-LSDWPTSVM – (Ck, δk)
it has analytical form:

v∗

k =
Ck

ϵ

[
Iml+l − Qk(ϵINk + QT

kQk)
−1QT

k

]
E-k1N-k

ξk
∗

= 1N-k −
Ck

ϵ
ET
-k

[
Iml+l − Qk(ϵINk + QT

kQk)
−1QT

k

]
E-k1N-k

(27)

where Qk = [Ek
√

δkMn E-k].

The proof of 3.4 is in Appendix. Moreover, the flow of using
eg-LSDWPTSVM for multi-class classification task is summarized
s follows.

Model: reg-LSDWPTSVM
Training Phase
Input: data set D as defined in (2); parameters
Ci, δi > 0 (i = 1, . . . , K ).
For k = 1 to K ,

Calculate Xk, X-k as defined in (3) and (4).
Calculate Sk, S-k as defined in (10) and (11).
Calculate Ek, E-k and Pk as defined in (23) and (25).
Calculate and v∗

k and ξk
∗

as defined in (26).
Output v∗

k and ξk
∗

as the optimal solution of
reg-LSDWPTSVM′′k.
Testing Phase
Assign the class label to a new data point by using the decision
function in (24).

Remark. Notice that both the DWPSVM [12] and the proposed
eg-LSDWPTSVM utilize the DWP surfaces, but there are several
ifferences between them. First, they use different classification
echanisms. The DWPSVM generates a DWP surface as a separa-

ion surface, while the reg-LSDWPTSVM adopts the twin SVM [6]
dea and generates a DWP surface to capture each class of data
ndividually. The second difference is the goals. The DWPSVMwas
roposed for binary classification, while the reg-LSDWPTSVM is
roposed to solve multi-class classification problems. Last but not
he least, the DWPSVM does not have an analytical optimal solu-
ion, but the proposed reg-LSDWPTSVM model has the analytical
ptimal solution.

. Computational experiments

In this section, we conduct computational experiments to in-
estigate the performance of the proposed (reg-DWPTSVM′k) and

(reg-LSDWPTSVM′k) models for multi-class classification. First,
we introduce some settings of the experiments and show the
flexibility of DWP surfaces in Section 4.1. Then we compare the
twin SVM models and the least squares twin SVM models by con-
ducting computational experiments on some artificial and public
benchmarks in Section 4.2. More experiments are conducted to
test the proposed reg-LSDWPTSVM model on some artificial data
sets in Section 4.3 and some public benchmark data sets in
Section 4.4.
7

Table 2
Data information.
Data set Artificial data Benchmark data

Arti2d3 Arti2d5 Arti3d3 Arti3d5 Iris Seeds

(n, K ) (2, 3) (2, 5) (3, 3) (3, 5) (4, 3) (7, 3)
# of data points 30 × 3 30 × 5 40 × 3 40 × 5 50 × 3 70 × 3

4.1. Experiment settings

In addition to the proposed reg-DWPTSVM model and reg-
LSDWPTSVM model, some other twin SVM models are tested
for comparisons, including TSVM model, LSTSVM model, KTSVM
model, LSKTSVM model, QTSVM model and LSQTSVM model.
To compare the twin SVM with traditional soft-margin SVM,
the KSVM model is also tested. Moreover, we test the logistic
regression (LR) model and the decision tree (DT) model along
with others in the experiments since both LR and DT are widely
used in the industry world for multi-class classification. All the
SVM models are equipped with OVA strategy for multi-class
classification in the experiments.

Throughout all tables and figures of results in this paper, each
model is denoted by its abbreviation name, as listed in Table 1. All
computational experiments are conducted on a desktop equipped
with eight Intel(R) Core(TM) i7-2600 CPU @ 3.40 GHz CPUs and
8GB RAM. Moreover, we utilize Gurobi 8.1.1, LIBSVM [19] and
Scikit-learn [23] to implement some of the tested models, as
listed in Table 1.

For each tested data set, data points are normalized to [0, 1] to
avoid the dominance of input features with greater numerical val-
ues over other smaller values. A 5-fold cross validation procedure
is applied for each experiment and each experiment is repeated
ten times for each model to make it statistically meaningful. All
the possible parameters are tuned by using grid method, such
as log2 C ∈ {−6, −3, . . . , 21, 22}, log2 γ ∈ {−4, −3, . . . , 3, 4},
log2 Ck ∈ {−8, −3, . . . , 3, 4} (k = 1, . . . , K ), log2 γk ∈ {−8, −3,
. . . , 3, 4} (k = 1, . . . , K ) and log2 δk ∈ {−8, −3, . . . , 3, 4} (k =

1, . . . , K ).
In order to show and compare the flexibility of the DWP

separation surfaces produced by the proposed reg-LSDWPTSVM
model and other least squares twin SVM models, Figs. 1(a)–1(d)
are displayed. The data set with linear, quadratic and highly
nonlinear patterns is plotted and separated with different least
square twin SVM models (LSTSVM, LSKTSVM, LSQTSVM and reg-
LSDWPTSVM).

We have the following observations from the figures. In
Fig. 1(a), LSTSVM model can only capture the linear pattern in
the data set. In Fig. 1(b), LSQTSVM model captures both lin-
ear and quadratic patterns, but it does not capture the highly
nonlinear pattern. In Figs. 1(c)–1(d), both reg-LSDWPTSVM and
LSKTSVM models capture all the different patterns. And the reg-
LSDWPTSVM model performs even better than the LSKTSVM
model. In addition, the ℓ regularization helps the reg-
2
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rtificial data results.
Model Accuracy score %

Arti2d3 Arti2d5 Arti3d3 Arti3d5

mean/std min/max mean/std min/max mean/std min/max mean/std min/max

LR 25.67/9.84 5.56/50.00 1.44/2.71 0.00/11.11 43.08/8.44 29.17/62.50 3.00/3.37 0.00/12.50
DT 54.78/10.77 27.78/77.78 38.22/11.75 11.11/66.67 64.17/7.19 50.00/79.17 39.50/7.95 20.83/58.33
KSVM 73.11/8.93 44.44/88.89 53.00/13.53 22.22/77.78 65.58/9.70 41.67/87.50 40.92/8.86 20.83/54.17
KTSVM 71.23/12.47 55.56/100.00 55.84/6.74 44.44/66.67 76.58/12.28 50.00/100.00 60.00/20.55 37.50/95.83
LSKTSVM 93.67/9.46 55.56/100.00 61.00/12.77 38.89/83.33 86.58/8.68 62.50/100.00 64.67/12.38 25.00/95.83
QTSVM 60.44/8.59 44.44/77.78 48.22/6.09 33.33/55.56 60.16/7.59 45.83/75.00 59.42/8.28 41.67/75.00
LSQTSVM 55.78/9.72 33.33/72.22 42.33/8.39 22.22/61.11 59.11/8.00 41.67/75.00 58.50/8.42 41.67/75.00
reg-DWPTSVM 99.56/1.52 94.44/100.00 98.33/5.17 72.22/100.00 94.58/4.23 83.33/100.00 91.67/5.32 83.33/100.00
reg-LSDWPTSVM 99.89/0.79 94.44/100.00 98.00/4.86 77.78/100.00 96.17/3.13 91.67/100.00 90.00/4.29 83.33/95.83
Table 4
Iris and seeds data results.
Model Accuracy score %

Iris Seeds

mean/std min/max mean/std min/max

LR 96.67/3.37 86.67/100.00 94.29/3.49 85.71/100.00
DT 95.07/2.88 86.67/100.00 91.25/4.36 80.95/100.00
KSVM 95.60/3.12 86.67/100.00 94.46/3.07 85.71/97.62
KTSVM 95.53/3.47 86.67/100.00 89.76/4.25 80.95/97.62
LSKTSVM 96.87/2.81 90.00/100.00 95.60/3.03 85.71/100.00
QTSVM 96.53/3.36 90.00/100.00 92.62/4.34 83.33/100.00
LSQTSVM 96.73/2.38 93.33/100.00 94.52/3.29 85.71/100.00
reg-DWPTSVM 97.00/3.03 90.00/100.00 93.27/3.53 85.71/100.00
reg-LSDWPTSVM 97.47/2.57 90.00/100.00 96.25/2.95 90.48/100.00
LSDWPTSVM captures the quadratic patterns well without over-
fitting.

4.2. A comparison of twin SVM models and least squares twin SVM
models

In this section, we would like to see the performances between
hose nonlinear twin SVMs and their least square versions.

All the models listed in Table 1 are tested on data sets listed
n Table 2. For each data set, the accuracy scores and the average
raining CPU time of each tested model are recorded and some
tatistics are listed in Tables 3–5.
Here are some observations from the results.

• Comparing with all other tested models, the proposed reg-
DWPTSVM and reg-LSDWPTSVM show their dominant per-
formance on the artificial data sets in terms of classification
accuracy. Since the artificial data sets are highly nonlinearly
distributed, the results verify the flexibility of surfaces pro-
duced by the proposed reg-DWPTSVM and reg-LSDWPTSVM
models.

• Among other tested benchmark models, the KTSVM and
LSKTSVM perform relatively better. Indeed, they are able
to capture some of the nonlinearity inside the data but
cannot fit as well as the proposed reg-DWPTSVM and reg-
LSDWPTSVM do. Although KSVM model can do nonlinear
classification, it does not work effectively for the artificial
data sets. The reason may be that these artificial data sets
have high nonlinearity and they are more suitable for twin
SVM models rather than soft-margin SVM models.

• Notice that, for some artificial data sets, the LSKTSVM model
and the reg-LSDWPTSVM model produce higher mean accu-
racy scores than KTSVM and reg-DWPTSVM do, respectively.
But the QTSVM model does perform better than LSQTSVM.
Due to the produced nonlinear surfaces, the KTSVM and
reg-DWPTSVM may cause overfitting, but their least squares
models do not suffer the overfitting issue. For QTSVM, the
quadratic surfaces it produces are not highly nonlinear, so
8

that the overfitting may not easily happen. It explains the
superior performance of QTSVM over LSQTSVM.

• For the iris data and the seeds data, they are relatively easy
to be classified since the accuracy scores produced by all
tested models are hardly less than 90%. Nevertheless, the
proposed reg-LSDWPTSVM model still beat all other tested
models. And the least squares version of each twin SVM
model performs better than itself.

• The training CPU time of each twin SVM model is three
magnitude orders bigger than that of its least squares ver-
sion. Indeed, each twin SVM model is solved by Gurobi QP
solver with interior point method. But each least squares
SVM model has analytical solution and it can be obtained
by solving a linear system, whose worst case computa-
tional complexity order is less than that of the interior point
method. Moreover, the training CPU time consumed by the
proposed reg-LSDWPTSVM is in the same order as those of
other tested least squares twin SVM models.

4.3. Artificial data sets

In this section, more computational experiments are con-
ducted on artificial data sets to see how the proposed reg-
LSDWPTSVM model performs when the number of features in-
creases and how it performs on imbalanced data sets. Since
the analytical solutions provide much higher computational ef-
ficiency without losing much accuracy, only least squares twin
SVM models along with LR, DT and KSVM models are tested as
benchmarks in the computational experiments in the rest of this
paper.

4.3.1. Artificial data with increasing number of features
We first test the proposed reg-LSDWPTSVM model on some

artificial data sets of different numbers of features. Some basic
information of the artificial data sets is listed in Table 6. For each
class, we generate a nonlinear surface (one in quadratic form and
two in quartic form with sufficient overlapping among them).
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Table 5
Training CPU time.
Model CPU time (s)

Arti2d3 Arti2d5 Arti3d3 Arti3d5 Iris Seeds

LR 0.009 0.012 0.008 0.025 0.013 0.013
DT 0.003 < 0.001 0.002 0.006 < 0.001 < 0.001
KSVM 0.053 0.063 0.064 0.037 0.016 0.016
KTSVM 0.516 2.894 0.686 8.074 2.743 6.906
LSKTSVM 0.003 0.003 0.002 0.003 < 0.001 < 0.001
QTSVM 0.025 0.047 0.027 0.069 0.066 0.325
LSQTSVM < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001
reg-DWPTSVM 0.103 0.166 0.599 0.96 3.532 185.229
reg-LSDWPTSVM < 0.001 < 0.001 < 0.001 < 0.001 0.002 0.002
Fig. 1. Least squares twin SVM examples.
Fig. 2. B2d data set.

hen the data points are randomly selected on the generated
onlinear surface for each class. For example, the B2d data set
s plotted in the following Fig. 2.
9

Table 6
Artificial B data information.
Data set B2d B4d B6d B8d B10d

n 2 4 6 8 10
# of data points 20 × 3 100 × 3 240 × 3 450 × 3 880 × 3

The accuracy scores produced by all tested models are
recorded and some statistics (mean, standard deviation, mini-
mum and maximum) are listed in Tables 7–9. For each data set,
we calculate the gap of the highest and the second highest mean
accuracy scores (denoted as d%), and plot in Fig. 3.

From results listed in Tables 7–9, we observe that the pro-
posed reg-LSDWPTSVM dominates all other tested models with
highest mean accuracy scores and smallest standard deviations.
More importantly, Fig. 3 shows the gap between the mean accu-
racy scores of reg-LSDWPTSVM and of the second most accurate
model becomes bigger as the number of features increases. It also
indicates that the proposed reg-LSDWPTSVM model may be more
capable of capturing the nonlinearity of the data than LSKTSVM
when the number of features increases.
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2d and B4d results.
Model B2d B4d

Accuracy score % CPU time (s) Accuracy score % CPU time (s)

mean/std min/max mean/std min/max

LR 32.92/13.38 16.67/58.33 0.004 51.33/5.53 36.67/60.00 0.010
DT 82.08/13.59 58.33/100.00 0.001 79.22/4.75 71.67/85.00 0.003
KSVM 69.17/10.85 50.00/83.33 0.017 72.78/7.63 55.00/85.00 0.759
LSKTSVM 98.75/3.05 91.67/100.00 < 0.001 87.00/5.46 75.00/93.33 0.006
LSQTSVM 85.83/8.16 75.00/100.00 < 0.001 79.22/6.14 70.00/88.33 < 0.001
reg-LSDWPTSVM 100.00/0.00 100.00/100.00 < 0.001 92.33/2.94 86.67/96.67 0.004
Table 8
B6d and B8d results.
Model B6d B8d

Accuracy score % CPU time (s) Accuracy score % CPU time (s)

mean/std min/max mean/std min/max

LR 72.87/4.98 61.11/81.94 0.020 64.70/3.92 58.89/70.37 0.035
DT 80.60/3.68 74.31/86.81 0.003 85.30/4.51 78.15/92.59 0.006
KSVM 76.39/3.36 68.75/81.94 3.750 67.26/3.96 63.33/75.56 15.973
LSKTSVM 90.28/1.91 86.11/93.06 0.081 87.89/2.03 84.07/90.74 0.545
LSQTSVM 81.94/3.64 72.92/87.50 < 0.001 82.44/3.48 76.67/87.04 < 0.001
reg-LSDWPTSVM 97.13/1.36 94.44/99.31 0.035 97.28/0.58 96.39/98.06 0.180
Table 9
B10d results.
Model B10d

Accuracy score % CPU time (s)

mean/std min/max

LR 77.40/1.59 73.67/80.11 0.044
DT 86.20/1.15 84.09/87.88 0.016
KSVM 85.58/1.73 83.14/87.88 50.068
LSKTSVM 86.16/1.72 83.90/89.96 1.610
LSQTSVM 82.56/1.15 80.87/84.47 0.001
reg-LSDWPTSVM 96.38/0.66 95.27/97.16 1.078
Fig. 3. d% vs. the number of features.

.3.2. Artificial imbalanced data
In this subsection, we test the proposed reg-LSDWPTSVM

odel on some imbalanced artificial data sets with different
umber of features and imbalanced ratios. The artificial data sets
tilized in the experiments are generated with 2, 4 and 8 features
n = 2, 4, 8) and each data set has 3 classes (K = 3). For each fixed
n and the corresponding amount of data points (N), three data
sets are created with imbalanced ratio to be 1, 3 and 10. More
information of the artificial data sets is listed in Table 10.
10
Since the data sets are imbalanced, the accuracy score may
not be a proper metric to distinguish the classification accuracy
of different classes. Instead, the following average accuracy score
(AvgAcc) defined by (28) is adopted to measure the classification
accuracy of each model [24]:

AvgAcc ≜
1
K

K∑
i=1

Ri (28)

where Ri is the true positive rate (in percentage) of the ith class.
For each data set, the AvgAcc of each tested model is recorded

and some statistics are listed in Tables 11–13.
Here are some observations from the results:

• The proposed reg-LSDWPTSVM model shows dominant per-
formance over all other tested models in terms of average
accuracy. In addition, with the same number of features,
the mean AvgAcc produced by each tested model decreases
when the imbalanced ratio increases. Indeed, more imbal-
anced the data is, more difficult it will be for classification.

• For a fixed number of features, the gap between the mean
AvgAcc produced by reg-LSDWPTSVM and the second high-
est mean AvgAcc increases when the data set becomes more
imbalanced. It indicates that even though the average accu-
racy scores could be affected when the imbalanced ratio in-
creases, the proposed reg-LSDWPTSVM is more stable than
others.
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mbalanced artificial data information.
Data set I1B2 I3B2 I10B2 I1B4 I3B4 I10B4 I1B8 I3B8 I10B8

n 2 4 8
# of data points 180 420 1200
N1/N2/N3 60/60/60 108/36/36 150/15/15 140/140/140 252/84/84 350/35/35 400/400/400 720/240/240 1000/100/100
Imbalanced ratio 1 3 10 1 3 10 1 3 10
Table 11
Imbalanced data n = 2 results.
Model I1B2 I3B2 I10B2

mean/std min/max mean/std min/max mean/std min/max

LR 30.00/8.65 16.67/50.00 33.00/1.18 28.57/33.33 33.33/0.00 33.33/33.33
DT 67.30/7.95 55.56/86.11 58.24/9.85 34.52/78.57 46.18/11.05 31.11/76.67
KSVM 81.75/5.23 66.67/91.67 76.43/10.33 47.62/100.00 71.00/12.93 44.44/88.89
LSKTSVM 97.06/7.47 58.33/100.00 94.79/7.67 66.67/100.00 72.00/12.75 44.44/100.00
LSQTSVM 49.52/7.15 36.11/69.44 48.48/8.58 27.38/64.29 39.56/7.50 33.33/66.67
reg-LSDWPTSVM 100.00/0.00 100.00/100.00 99.71/1.14 95.24/100.00 79.37/9.61 66.67/100.00
Table 12
Imbalanced data n = 4 results.
Model I1B2 I3B2 I10B2

mean/std min/max mean/std min/max mean/std min/max

LR 79.40/4.55 67.86/91.67 50.07/4.10 42.58/55.75 48.57/5.41 42.86/57.14
DT 92.83/2.45 88.10/98.81 91.28/3.91 85.42/95.83 84.76/5.95 75.24/92.86
KSVM 89.12/3.45 83.33/100.00 85.63/6.58 73.75/96.58 76.76/7.92 64.76/95.24
LSKTSVM 96.62/2.95 85.71/100.00 93.24/4.56 85.42/97.92 78.14/9.83 61.90/90.00
LSQTSVM 92.26/2.80 86.90/100.00 91.29/4.84 79.92/97.92 53.24/6.13 42.86/66.19
reg-LSDWPTSVM 99.83/0.72 96.43/100.00 98.87/1.17 95.83/100.00 98.52/2.38 94.76/100.00
Table 13
Imbalanced data n = 8 results.
Model I1B2 I3B2 I10B2

mean/std min/max mean/std min/max mean/std min/max

LR 77.04/2.28 74.17/80.00 74.17/4.18 66.90/83.10 67.82/4.64 61.00/77.33
DT 89.83/2.24 85.83/93.75 88.87/4.87 81.25/94.21 80.83/5.85 72.67/88.83
KSVM 76.08/2.00 72.50/78.33 73.08/2.86 69.68/77.55 67.90/5.85 59.33/77.17
LSKTSVM 77.33/12.65 52.92/90.00 61.37/8.18 40.97/73.15 49.17/7.88 40.33/62.50
LSQTSVM 89.67/1.81 87.08/92.92 80.56/2.73 74.31/83.80 60.95/5.14 51.50/70.00
reg-LSDWPTSVM 94.03/1.45 90.83/96.25 93.65/1.41 92.13/96.30 91.85/3.56 87.00/98.83
4.4. Benchmark data sets

In this section, we investigate the performance of the proposed
eg-LSDWPTSVM on some public benchmark data sets. The basic
nformation of the benchmark data sets1 are listed in Table 14.

In addition to the models listed in Table 1, one shallow artifi-
ial neural network (ANN) and one deep artificial neural network
DANN) are also tested for comparison. Besides the input and the
utput layers, the ANN has one hidden layer while the DANN
as ten hidden layers. The number of nodes Ω on each hidden
ayer is decided by using the grid method Ω ∈ {n, 2n, 4n} in the
raining process. The activation functions in both ANN and DANN
re rectified linear unit (ReLU) functions. Both ANN and DANN are
mplemented by using Keras 2.4.0 Python package.

Most of the public benchmark datasets are imbalanced so the
vgAcc is adopted to measure the classification accuracy. For each
ata set, the average training CPU time of each tested model and
he AvgAcc scores are recorded and some statistics are listed in
ables 15–18. The CPU time consumed to forecast the class of
ach data point, which is denoted as the testing CPU time, is also
ecorded and listed in Table 18.

1 Data sets are from UCI Machine Learning Repository [25] or kaggle.com.
11
Here are some observations from the results:

• The proposed reg-LSDWPTSVM model produces higher
mean AvgAcc scores than all other tested models on the
tested benchmark data sets. Notice that, the second most
accurate models on different data sets are different. For the
Multiclass data set, it is the LR model; for the Breast tissue
data, it is the DT model; for the Ecoli data set, it is LSQTSVM;
for the Web phishing and Car evaluation data sets, it is
the KSVM model; for the Wine data, it is the LSKTSVM
model. However, they are all outperformed by the proposed
reg-LSDWPTSVM model in terms of classification accuracy,
which indicates that the reg-LSDWPTSVM model may work
effectively on data sets of differently distributed patterns.

• Except the Multiclass and the Wine data sets, all the other
data sets are imbalanced with the imbalanced ratio to be at
least 3:1. Since the proposed reg-LSDWPTSVM model pro-
duces higher mean AvgAcc scores over all other tested mod-
els on all the tested data sets, we can see its effectiveness in
classifying multi-class imbalanced data sets and its poten-
tial in solving real-life imbalanced multi-class classification
problems.

• The training CPU time of the reg-LSDWPTSVM model on all
data sets is acceptable. For all tested benchmark data sets,
the proposed reg-LSDWPTSVM model is only 1–2 orders of
magnitude slower than other tested models. Even though for

http://www.kaggle.com
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enchmark data information.
Data set Multiclass Breast tissue Wine Ecoli Web phishing Car evaluation

n 8 9 13 7 9 6
K 3 3 3 5 3 4
# of data points 34/34/32 49/21/14 71/59/48 143/77/52/35/20 702/548/103 1210/384/69/65
Table 15
Multiclass & Breast tissue results.
Model Multiclass Breast tissue

AvgAcc % CPU time (s) AvgAcc % CPU time (s)

mean/std min/max mean/std min/max

LR 96.30/3.43 88.89/100.00 0.011 85.80/9.60 62.96/96.30 0.020
DT 91.48/4.63 83.33/100.00 0.001 88.95/9.00 67.59/100.00 0.003
KSVM 95.19/3.56 88.89/100.00 0.014 86.11/9.88 66.67/100.00 0.015
LSKTSVM 94.44/4.70 83.33/100.00 0.001 88.40/8.86 75.00/100.00 < 0.001
LSQTSVM 95.56/4.79 83.33/100.00 0.001 73.46/10.84 54.63/91.67 0.001
reg-LSDWPTSVM 97.41/3.56 88.89/100.00 0.159 89.69/8.76 75.00/100.00 0.548
ANN 94.67/7.08 66.67/100.00 0.386 89.04/7.67 75.93/100.00 0.709
DANN 95.00/5.52 83.33/100.00 23.995 89.17/10.29 67.59/100.00 22.911
Table 16
Wine & Ecoli results.
Model Wine Ecoli

AvgAcc % CPU time (s) AvgAcc % CPU time (s)

mean/std min/max mean/std min/max

LR 98.10/1.89 93.92/100.00 0.010 52.42/3.50 45.29/56.62 0.022
DT 91.93/5.62 80.42/100.00 0.002 49.10/3.53 43.19/56.43 0.002
KSVM 97.76/2.78 90.21/100.00 0.015 52.65/3.35 47.29/56.67 0.016
LSKTSVM 99.03/1.34 96.30/100.00 0.002 54.08/2.70 51.19/57.95 0.007
LSQTSVM 98.01/2.35 93.27/100.00 0.002 54.42/3.94 48.52/59.29 0.001
reg-LSDWPTSVM 99.16/1.36 95.24/100.00 6.481 54.60/2.54 49.95/58.00 0.132
ANN 97.43/2.88 89.56/100.00 0.184 51.27/3.57 45.19/57.33 2.795
DANN 98.04/3.32 89.56/100.00 42.531 51.53/5.49 44.43/58.00 69.752
Table 17
Web phishing & Car evaluation results.

Model
Web phishing Car evaluation

AvgAcc % CPU time (s) AvgAcc % CPU time (s)

mean/std min/max mean/std min/max

LR 62.61/2.68 57.63/67.89 0.025 49.61/4.66 39.83/58.62 0.072
DT 85.75/3.50 79.43/90.89 < 0.001 70.82/2.32 65.35/74.67 < 0.001
KSVM 85.93/1.95 83.03/88.51 0.094 72.96/1.61 69.63/74.79 0.080
LSKTSVM 84.64/4.84 74.90/88.95 0.033 71.82/2.08 67.17/74.38 0.678
LSQTSVM 69.57/3.67 63.92/76.30 0.006 60.42/6.29 48.00/68.03 < 0.001
reg-LSDWPTSVM 86.79/3.35 82.90/92.28 0.423 73.23/1.12 71.18/74.38 0.067
ANN 83.36/5.55 66.60/91.30 7.664 69.80/4.96 52.51/74.57 5.812
DANN 83.65/4.47 74.36/89.39 247.555 72.84/1.10 71.76/74.67 263.783
Table 18
Testing CPU time on benchmark data.
Model Testing CPU time (s)

Multiclass Breast tissue Wine Ecoli Web phishing Car evaluation

LR < 10−4 < 10−4 < 10−4 < 10−4 < 10−4 < 10−4

DT < 10−4 < 10−4 < 10−4 < 10−4 < 10−4 < 10−4

KSVM < 10−4 < 10−4 < 10−4 < 10−4 < 10−4 < 10−4

LSQTSVM 10−4 10−3 10−3 10−3 10−3 10−3

LSKTSVM < 10−4 10−3 10−4 10−4 10−4 10−4

reg-LSDWPTSVM 10−3 10−3 10−3 10−3 10−3 10−3

ANN < 10−4 10−4 10−3 10−3 10−3 10−3

DANN 10−1 10−1 10−1 10−1 10−1 10−1
the Wine data, the CPU time of reg-LSDWPTSVM is larger
than that for other data, it is still less than 7 s and ac-
ceptable. Besides, the mean AvgAcc score of reg-DWPTSVM
is higher than that of the second most accurate model by
0.13%–1.11%. The advantage of reg-LSDWPTSVM may not be
obvious, but it can be valuable in some real-life applications.
12
• Notice that, the Car evaluation data set has more than
1000 data points which is much more than the Ecoli data
set. And its feature is only one less than that of the Ecoli
data set. However, the training CPU time consumed by reg-
LSDWPTSVM on Car evaluation data is less than that on
Ecoli data. It indicates that the computational efficiency of
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the proposed reg-LSDWPTSVM model is affected more by
the number of data features than by the number of data
points. The testing CPU time of the reg-LSDWPTSVM on each
benchmark data set is short and acceptable.

4.5. Large-scale data sets

In this section, the proposed reg-LSDWPTSVM model is ad-
justed and modified in order to improve the computational ef-
ficiency when applied to high dimensional large-scale data sets.
We first introduce how the proposed model is modified, and
then conduct computational experiments to validate the adjusted
model.

Recall that the convex QP problem (reg-LSDWPTSVM′′k) is
solved for implementing the proposed reg-LSDWPTSVM model.
However, from the computational results in Section 4.4, the train-
ing CPU time of the proposed model increases fast as the number
of features of the data set increases. In some real-life applications,
the data sets may have a large number of features, e.g., more than
100 features. In order to improve the computational efficiency
when applied on those high dimensional large-scale data sets,
the proposed model can be modified to reduce the computational
complexity.

Similar to hvec and lvec defined in Section 2.1, we first define
hdvec and ldvec as the following. For a symmetric matrix A ∈ Sn,
and vector a ∈ Rn,

hdvec(A) ≜ [A11, A12, A22, A23, . . . , An−1,n−1, An−1,n, Ann]
T

∈ R2n−1.

Notice that hdvec(A) is different from hvec(A). Instead of keep-
ing all the upper triangular information of the symmetric matrix
A, hdvec(A) keeps only the main and the subdiagonal information
of A. It loses some information of A, but reduces the dimension
from n(n − 1)/2 to be 2n − 1. In addition, define

ldvec(a) ≜
[
1
2
a21, a1a2,

1
2
a22, a2a3, . . . ,

1
2
a2n−1, an−1an,

1
2
a2n

]T
∈ R2n−1.

Calculate the vectors in (10), (11) and (18) of the manuscript,
y using the mappings hdvec and ldvec:

• ŝ(i) ≜ ldvec(x(i)) ∈ R2n−1, ẑ (i) = [ŝ(i)
T
, x(i)T , 1]T ∈ R3n,

η̂
(i)

= ldvec(ẑ (i)) ∈ R6n−1.
• ŵW = hdvec(wζ w

T
ζ ), ŵA = hdvec(A).

And then calculate the corresponding data matrices Ŝk, Ŝ-k,
Ĥk, Ĥ-k, Êk and Ê-k as defined by (10), (11), (20), (21) and (23)
in the manuscript with ŝ(i), η̂(i). Moreover, calculate M̂n as the
following:

M̂n ≜

[
I6n−1 0(6n−1)×3n

03n×(6n−1) 03n×3n

]
∈ R(9n−1)×(9n−1) (29)

Let v̂k = [ŵ
T
W , ŵ

T
A, b

T , q]T , the proposed (reg-LSDWPTSVM′′k)
is degenerated to be the following QP problem:

min
1
2
v̂
T
k

(
ÊkÊ

T
k + δkM̂n

)
v̂k +

Ck

2
ξ̂
kT

ξ̂
k

s.t. Ê
T
-kv̂k = 1N-k − ξ̂

k

v̂k ∈ R9n−1, ξ̂
k
∈ RN-k

+ .

(reg-LSDWPdTSVM′′k)

where Ck and δk are given positive parameters. Similarly, a new
data point x will be assigned to class k̂ if

k̂ = argmin{|

[
η̂
T
, ŝT , xT , 1

]
v̂

∗

k |}
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Table 19
Large-scale data information.
Data set GSAD DNA HARwS

(n, K ) (128, 5) (180, 3) (562, 5)
# of data points 197 1186 7352

Remark. (reg-LSDWPdTSVM′′k) has only 9n − 1 + N-k vari-
ables. Similarly, its optimal solution v∗

k can be obtained by solv-
ing a linear system with only 9n − 1 variables and equations,
whose worst case complexity is O(n3). Hence, the computational
cost will be much cheaper than that of the (reg-LSDWPTSVM′′k)
model. Therefore, for high dimensional large-scale data sets, (reg-
LSDWPdTSVM′′k) is recommended to be implemented for (reg-
LSDWPTSVM) for a better efficiency.

To validate the performance of the adjusted
(reg-LSDWPdTSVM′′k) model on large-scale data sets, we conduct
computational experiments by using the following data sets (see
Table 19)2:

The computational results are listed as the following. The re-
sults are also compared with other widely used multi-classifiers,
including the LR, DT, KSVM and ANN.

From the results in Tables 20 and 21, we can see that the
modified model provides not only the highest AvgAcc scores, but
acceptable CPU time as well. This clearly indicates that the mod-
ified model has the potential in solving multi-class classification
problems with high dimensional large-scale data sets.

5. Conclusion

In this paper, we have proposed an ℓ2 regularized least squares
kernel-free DWP twin SVM model with OVA strategy for multi-
class classification. It directly produces the DWP surfaces. Certain
theoretical properties have been studied. Computational experi-
ments have been conducted to investigate the effectiveness and
computational efficiency of the proposed model. Moreover, the
proposed reg-LSDWPTSVM model has been tested on imbalanced
data sets. Some major findings are summarized as follows.

• Equipped with the OVA strategy, the proposed
reg-LSDWPTSVM model outperforms other least squares
twin SVM models for multi-class classification problems in
terms of classification accuracy. The computational results
on imbalanced artificial data sets indicate an increasing
dominance of the reg-LSDWPTSVM model over others when
the data becomes more imbalanced. Moreover, the com-
putational results on imbalanced public benchmarks imply
the effectiveness of the proposed reg-LSDWPTSVM model in
solving real-life imbalanced multi-class classification prob-
lems.

• The proposed reg-LSDWPTSVM model is a kernel-free SVM
model, which does not require any kernel. It saves consid-
erable effort when doing real-life applications. Moreover,
it adopts the idea of the least squares SVM, which yields
the satisfying computational efficiency. The DWP surfaces
produced by reg-LSDWPTSVM are highly nonlinear quartic
surfaces. Therefore, the proposed model has better capabili-
ties to capture the hidden high-degree nonlinearity inside
the data. In addition, the ℓ2 regularization term on the
fourth order term helps the produced surfaces fit the data
with different levels of nonlinearity.

2 Sources of data can be found in Appendix.
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arge-scale data results.
Model AvgAcc %

GSAD DNA HARwS

mean/std min/max mean/std min/max mean/std min/max

LR 58.18/2.74 50.00/60.00 92.44/1.25 90.68/94.92 72.77/0.51 71.92/73.39
DT 57.90/2.86 50.00/60.00 87.25/2.77 82.63/91.95 71.68/0.48 70.88/72.29
KSVM 58.20/2.61 51.00/60.00 93.39/1.91 89.41/96.61 72.03/0.53 71.05/72.78
reg-LSDWPTSVM 59.00/2.24 55.00/60.00 93.52/1.12 91.10/95.34 73.75/0.47 73.13/74.43
ANN 58.84/2.48 51.00/60.00 91.95/1.55 88.77/94.25 72.80/0.45 71.53/73.78
Table 21
Large-scale data CPU time.
Model CPU time (s)

GSAD DNA HARwS

LR 0.015 0.018 0.691
DT 0.010 0.010 1.849
KSVM 0.037 0.355 6.687
reg-LSDWPTSVM 0.090 0.132 2.431
ANN 1.727 5.668 604.381

• The proposed reg-LSDWPTSVM model has shown its domi-
nant performance on most of the artificial and public bench-
mark data sets. The computational results on some artificial
data sets indicate its increasing dominance over other tested
models as the number of features increases. Moreover, the
computational results on public benchmark data sets show
the strong potential of the reg-LSDWPTSVM model in solv-
ing real-life multi-class classification problems.

• The proposed reg-LSDWPTSVM has been adjusted and im-
plemented for multi-class classification tasks with high di-
mensional data sets. Due to a simpler structure, the compu-
tational efficiency is significantly improved. Computational
results on large-scale data sets have validated the promising
performance of the modified model.

Our research can be extended to some additional research
orks. First, although the optimal solution to the proposed reg-
SDWPTSVM model has an analytical form, the training CPU time
onsumed increases fast as the size of the data set increases. So an
mmediate future work is to design an suitable algorithm [26,27]
o improve the computational efficiency of the proposed model.
oreover, the proposed reg-LSDWPTSVM model can be extended

or real-life applications with imbalanced data, including disease
iagnosis [28] and credit scoring [29,30]. Also, we would like to
nvestigate the robustness [31] of the proposed model.
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Appendix. Proofs and the source of data

The following information can be found in this link:

https://github.com/tonygaobasketball/reg-LSDWPTSVM-project.

• Proofs of Theorems 3.3 and 3.4.
• Resources of public benchmark data sets used in Sections 4.4

and 4.5.
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