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a b s t r a c t 

As a well-known machine learning technique, support vector machine (SVM) with a kernel function 

achieves much success in nonlinear binary classification tasks. Recently, some quadratic surface SVM 

models are proposed and studied by utilizing quadratic surfaces for nonlinear binary separations. In this 

paper, a kernel-free soft quartic surface SVM model is proposed by utilizing the double well potential 

function for highly nonlinear binary classification. Mathematical analysis on the theoretical properties of 

the proposed model, including the existence, uniqueness and support vector representation of optimal so- 

lutions, is shown. The sequential minimal optimization algorithm is adopted to implement the proposed 

model for computational efficiency. Numerical results on some artificial and public benchmark data sets 

demonstrate its effectiveness over well-known SVM models with or without kernel functions. The pro- 

posed model is extended to successfully handle some real-life corporate and personal credit data sets for 

applications. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Binary classification has made a crucial impact in many fields. 

arious models and algorithms have been proposed in recent 

ears. Support vector machine (SVM) was proposed in late 1990’s 

 Cortes & Vapnik, 1995 ), and has been well studied with many 

uccessful applications. Given a data set, the classical linear SVM 

odel ( Cortes & Vapnik, 1995 ) separates the data points into two 

lasses utilizing a hyperplane, while the margin between the two 

lasses is maximized and the misclassification of data points is 

inimized. It works effectively for linearly separable data sets but 

t may fail for nonlinearly separable data sets. SVM models with 

ernel functions ( Cortes & Vapnik, 1995 ) were proposed to fix this 

rawback. They first map all points into a higher dimensional fea- 

ure space, and then the mapped points are classified by a linear 

yperplane. 

Although achieving a great success in many applications, SVMs 

ith kernel functions may have some disadvantages ( Blanquero, 

arrizosa, Jimnez-Cordero, & Mart-n-Barragn, 2019; Chen, Fan, & 
∗ Corresponding author. 

E-mail addresses: zgao5@ncsu.edu (Z. Gao), fang@ncsu.edu (S.-C. Fang), 

uojian546@hotmail.com (J. Luo), ngmedhin@ncsu.edu (N. Medhin). 

&  

s

r

m

S

ttps://doi.org/10.1016/j.ejor.2020.10.040 

377-2217/© 2020 Elsevier B.V. All rights reserved. 

Please cite this article as: Z. Gao, S.-C. Fang, J. Luo et al., A kernel-free

European Journal of Operational Research, https://doi.org/10.1016/j.ejor.
un, 2016 ). First, there is no general principle to pre-select a suit- 

ble kernel function for a given data set. Besides, the performance 

f SVM models with a particular kernel function depends heav- 

ly on the parameters embedded in the kernel function ( Scholkopf 

 Smola, 2001 ). Moreover, using some kernel functions may be 

omputationally expensive since the inverse of a kernel matrix is 

eeded for solving the dual problem, or a decomposition of the 

ernel matrix is needed for solving the primal problem ( Cristianini 

 Shawe-Taylor, 20 0 0 ). In addition, the singularity issue of a ker- 

el matrix may influence the accuracy of classification. It should be 

oted that the developed sequential minimal optimization (SMO) 

lgorithm in Platt (1998) helps avoid the decomposition of ker- 

el matrix ( Fan, Chen, & Lin, 2005 ) and improves the training ef- 

ciency of the kernel-based SVM models for supervised classifica- 

ion. 

To overcome those drawbacks, Dagher (2008) proposed a 

ernel-free quadratic SVM model, which has been extended to a 

oft-margin quadratic surface SVM (SQSSVM) model ( Luo, Fang, 

eng, & Guo, 2016; Mousavi, Gao, Han, & Lim, 2019; Yan, Bai, Fang, 

 Luo, 2018 ). The main idea of SQSSVM is to seek a quadratic

eparation surface, which maximizes the sum of relative geomet- 

ical margins ( Dagher, 2008; Luo et al., 2016 ) and penalizes the 

isclassifications of all data points. There are other kernel-free 

VM models proposed in literature. Astorino and Fuduli (2015) di- 
 double well potential support vector machine with applications, 
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ectly constructed a spherical surface with no kernel for semi- 

upervised separation, but it might not be suitable for supervised 

inary classification problems. Moreover, the spherical separation 

urface is a special type of quadratic surfaces, which may have 

ore limitations to handle highly nonlinear cases. Bai, Han, Chen, 

nd Yu (2015) proposed a quadratic kernel-free least square SVM 

nd applied it to target disease classification. Tian, Yong, and Luo 

2018) proposed a kernel-free fuzzy quadratic surface SVM and ap- 

lied it for the reject inference procedure in credit scoring. Gao, 

ai, and Zhan (2019) proposed a quadratic kernel-free least square 

win SVM. These quadratic kernel-free SVM models work well 

or some applications, but they still have some limitations: First, 

he used separating quadratic surfaces in these models may not 

ell handle highly nonlinear separable data sets. In addition, these 

odels adopt the relative geometrical margins of all points to mea- 

ure the separability between two classes so that it requires extra 

ime to calculate the coefficient matrix in the objective function of 

 corresponding model. 

Double well potential (DWP) function attracts considerable at- 

entions in quantum mechanics and solid mechanics ( Gao & Yu, 

008; Heuer & Haeberlen, 1991 ). It is a special category of degree- 

 multi-variate polynomial function, where a quadratic term is em- 

edded in a quadratic function. The DWP function was utilized in 

he numerical approximation to the generalized Ginzburg-Landau 

unctional ( Gao & Yu, 2008 ). Some optimization properties of DWP 

unction were studied in Fang, Gao, Lin, Sheu, and Xing (2017) and 

ia, Sheu, Fang, and Xing (2017) . Our motivation to investigate 

WP function comes from the aim to build a kernel-free SVM 

odel that can handle highly nonlinearly separable data. Recall 

hat the linear SVM model was initially proposed for binary classi- 

cation. Since not all data sets can be linearly separated, the ker- 

el functions were equipped on SVM models for nonlinear binary 

lassification. To overcome some drawbacks of kernel-based SVM 

odels, the kernel-free QSSVM model was proposed by directly 

sing quadratic surfaces for nonlinear separation. Although QSSVM 

orks well on some data, it cannot well handle highly nonlinearly 

eparable data. As a forth degree polynomial function, the DWP 

unction is more “nonlinear” than a quadratic or a cubic function. 

herefore, DWP function has a strong potential for highly nonlinear 

lassifications. 

In this paper we propose a DWP based kernel-free nonlinear 

VM model, which is denoted as DWPSVM. Certain theoretical 

roperties are studied, including the solution existence, uniqueness 

nd support vector representation. Numerical experiments are con- 

ucted to investigate the effectiveness and efficiency of the pro- 

osed DWPSVM model. Besides, it is applied to credit scoring with 

eal-life corporate and benchmark personal credit data. The main 

ontributions of this paper to the field of binary classification in- 

lude: 

(1) To the best of our knowledge, this is the first study of 

proposing a kernel-free quartic surface SVM (i.e. DWPSVM) 

for binary classification. The proposed kernel-free DWPSVM 

model handles the drawbacks induced by kernel functions 

in classical SVM models, which may save the effort s used in 

selecting suitable kernel functions and tuning related kernel 

parameters. 

(2) The proposed DWPSVM model is theoretically and numeri- 

cally investigated in this paper. It outperforms those well- 

known kernel-based SVM models and kernel-free SVM mod- 

els for binary classifications. The well-known SMO algorithm 

is adopted to implement the proposed model for compu- 

tational efficiency. Numerical results indicate its increasing 

dominance in classification accuracy as data features in- 

creases. Moreover, DWPSVM has the potential to be applied 
to solve some real-life problems. A

2 
The rest of the paper is organized as follows. In Section 2 , we

riefly review some related works in binary classification using 

VM models in the literature. The DWP function is introduced to 

ropose a DWPSVM model based on a newly-derived margin (i.e., 

-margin) in Section 3 . Then we investigate the theoretical proper- 

ies of DWPSVM in Section 4 . Computational experiments are con- 

ucted using the artificial, public benchmark and real-life credit 

ata sets in Section 5 . Section 6 concludes the paper. 

. Preliminaries 

In this section, we introduce some preliminary knowledge and 

riefly review some related SVM models for binary classification. 

.1. Mathematical notations 

Throughout this article, we use lower case letters to denote 

calars, bold lower case letters to denote vectors, and bold up- 

er case letters to denote matrices. We denote the n -dimensional 

eal space by R 

n , n -dimensional nonnegative orthant by R 

n + , zero 

atrix of size m × n by 0 m ×n , n × n identity matrix by I n , all-

ne matrix of size m × n by 1 m ×n , diagonal matrix with vector 

 = [ a 1 , . . . , a n ] 
T on its diagonal by Diag (a 1 , . . . , a n ) and the set of

ll n × n real symmetric matrices by S n . For any A ∈ S 
n , we write

 � 0 if A is positive definite and A � 0 if A is positive semidefi- 

ite. Given any matrix B ∈ R 

m ×n , B i • stands for the i th row of B ,

nd B • j stands for the jth column of B . 

For any square matrix A = 

[
A i j 

]
i, j=1 , ... ,n 

∈ R 

n ×n , its vectorization 

s defined as a vector of size n 2 formed by stacking up the columns 

f A , i.e., the vectorization of A is given by 

ec ( A ) � [ A 11 , . . . , A n 1 , A 12 , . . . , A n 2 , . . . , A 1 n , . . . , A nn ] 
T ∈ R 

n 2 . 

When A is symmetric, all information of A is included in the 

pper triangular n (n +1) 
2 elements ( Dagher, 2008; Luo et al., 2016; 

ousavi et al., 2019 ). Hence, it is enough to consider the following 

alf-vectorization of A ∈ S 
n : 

vec ( A ) � [ A 11 , . . . , A 1 n , A 22 , . . . , A 2 n , . . . , A n −1 ,n −1 , A n −1 ,n , A nn ] 
T ∈ R 

n (n +1) 
2 . 

For any vector a = [ a 1 , . . . , a n ] 
T ∈ R 

n , we use lvec ( a ) to denote

he vector of the cross terms of its elements ( Dagher, 2008; Luo 

t al., 2016; Mousavi et al., 2019 ): 

vec ( a ) 

� 

[ 
1 

2 
a 1 a 1 , a 1 a 2 , . . . , a 1 a n , 

1 

2 
a 2 a 2 , a 2 a 3 , . . . , a 2 a n , . . . , 

1 

2 
a n a n 

] T 
∈ R 

n (n +1) 
2 . 

Notice that 1 
2 a 

T A a = lvec ( a ) T hvec ( A ) , then a quadratic term 

ith respective to a can be substituted by a linear term. 

For any vector a , denote its � 2 norm as ‖ a ‖ 2 � 

√ 

a 

T a . For any

ymmetric matrix A , denote its matrix � 2 -norm and Frobenious 

orm as the following: 

 A ‖ F � 

( 

n ∑ 

i =1 

n ∑ 

j=1 

| A i j | 2 
) 1 / 2 

‖ A ‖ 2 � 

√ 

λmax ( A 

T A ) 

here λmax represents the largest eigenvalue of A . 

To connect Frobenious norm with hvec( A ), define matrix H n ∈ 

 

n (n +1) 
2 such that 

vec ( A ) T H n hvec ( A ) = ‖ A ‖ 

2 
F 

hen n = 3 , H 3 = Diag (1 , 2 , 2 , 1 , 2 , 1) . And in general, 

 n � 2 I n (n +1) 
2 

− Diag ( hvec ( I n ) ) . (1) 

Given a matrix A ∈ R 

n ×n , the singular value decomposition 

SVD) of A is represented as 

 = U �V 

T 
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Fig. 1. DWP function examples. 
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here U ∈ R 

n ×n , � = Diag (σ1 , . . . , σn ) ∈ R 

n ×n and V ∈ R 

n ×n .

hroughout this article, the singular values are ordered in se- 

uence such that σ1 � · · · � σr � σr+1 = · · · = σn = 0 . If matrix 

 ∈ S 
n , then its matrix � 2 -norm is related to its biggest singular

alue ( Meyer, 20 0 0 ). 

emma 2.1. Let A ∈ S 
n , then ‖ A ‖ 2 = σ1 ( A ) and ‖ A ‖ F =∑ n 

i =1 σ
2 
i 
( A ) 

)1 / 2 
. 

.2. Related SVM models for binary classification 

Given a data set of two classes, the goal of binary classification 

s to find a separation surface to separate them as accurate as pos- 

ible. For any binary classification problem, the data set with two 

lasses can be mathematically denoted by 

 = 

{ (
x (i ) , y (i ) 

)
i =1 , ··· ,N 

∣∣ x (i ) ∈ R 

n , y (i ) ∈ {−1 , 1 } 
} 

, (2) 

here N is the data size, n is the number of features, x (i ) = 

 x (i ) 
1 

, . . . , x (i ) 
n ] T ∈ R 

n is the vector of n feature values of point i, and

 

(i ) is the label of point x (i ) . Denote the positive and negative la- 

eled index sets as M 

+ � { i | y (i ) = 1 } and M 

− � { i | y (i ) = −1 } , and

et the total index set be M � M 

+ ∪ M 

−. Denote their cardinali-

ies as N 

+ and N 

−, respectively, and notice that N = N 

+ + N 

−. In

his article we assume that both M 

+ and M 

− are nonempty. The 

oal of binary classification is to actually separate the data by a 

lassifier. 

According to Deng, Tian, and Zhang (2012) , a data set D is lin- 

arly separable if there exists u ∈ R 

n , and d ∈ R such that 

 

T x (i ) + d > 0 (i ∈ M 

+ ) , u 

T x (i ) + d < 0 , (i ∈ M 

−) . (3)

iven a linearly separable data set D, the idea of SVM is to sep-

rate the data by a hyperplane while the margin of separation is 

aximized ( Cortes & Vapnik, 1995 ). Denote the separation func- 

ion as f ( x ) = u 

T x + d, then the width of margin equals to 2 
‖ u ‖ 2 .

n example on R 

2 is shown in Fig. 2 a. If the data set D is not

inearly separable, the soft-margin idea ( Cortes & Vapnik, 1995 ) is 

dopted by introducing the slack vector ξ = [ ξ1 , . . . , ξN ] 
T ∈ R 

N to

llow the location of points to violate constraints. The soft-margin 

VM is formulated as the following model (SSVM) : 

min 

1 

2 

‖ u ‖ 

2 
2 + C 

N ∑ 

i =1 

ξi 

s.t. y (i ) 
(
u 

T x (i ) + d 
)
� 1 − ξi ∀ i = 1 , . . . , N 

u ∈ R 

n , d ∈ R , ξ ∈ R 

N 
+ . (SSVM) 

here C > 0 is the penalty parameter for data points. 

However, most data sets are not linearly separable and a non- 

inear separation surface is more appropriate than a linear one. The 

onlinear classification task could be done by an SVM model with 
3 
 kernel function, which was proposed in Vapnik (2013) and equiv- 

lent to the formulation as the following: 

min 

1 

2 

‖ v ‖ 

2 
2 + C 

N ∑ 

i =1 

ξi 

s.t. y (i ) 
(
v T φ( x (i ) ) + d 

)
� 1 − ξi ∀ i = 1 , . . . , N 

v ∈ R 

l , d ∈ R , ξ ∈ R 

N 
+ . (SSVM-kernel) 

here φ maps data point x (i ) from R 

n to R 

l (m < l) and 

( x (i ) , x ( j) ) = φ( x (i ) ) T φ( x ( j) ) is a kernel function for any x (i ) and

 

( j) . There are various kernel functions including the frequently 

sed Gaussian (RBF) kernel and Quadratic (2nd order polynomial) 

ernel ( Scholkopf & Smola, 2001 ). The idea of an SVM with a ker-

el function is to first map the data points into a higher dimen- 

ional feature space and then separate the mapped data points 

ith a hyperplane in the higher dimensional space. 

Notice that (SSVM-kernel) is also a convex quadratic program- 

ing (QP) problem, it is important to studied its dual problem, 

hich can be formulated as the following: 

min 

1 

2 

N ∑ 

i =1 

N ∑ 

j=1 

K( x (i ) , x ( j) ) y (i ) y ( j) αi α j −
N ∑ 

i =1 

αi 

s.t. 

N ∑ 

i =1 

αi y 
(i ) = 0 

0 � αi � C, i = 1 , . . . , N. (DSSVM-kernel) 

here C is the parameter of penalties. The details of derivation for 

his dual problem can be found in Vapnik (2013) . Even though the 

ual gap is zero from duality theory, the dual problem (DSSVM- 

ernel) is simpler as it has only one linear equality constraint with 

he upper bounds of variables. Hence, the (SSVM-kernel) model 

s usually trained from its dual side. One of the most popular 

pproaches proposed in literature for solving its dual problem is 

he sequential minimal optimization (SMO) algorithm ( Platt, 1998 ), 

hich has been adopted in software packages such as LIBSVM 

 Chang & Lin, 2011 ). 

Moreover, kernel-free nonlinear SVM models were proposed 

nd developed in Dagher (2008) and Luo et al. (2016) by directly 

tilizing quadratic surfaces for separations. These kernel-free SVM 

odels share the similar idea of separating the data in the original 

pace instead of mapping the data onto a higher dimensional fea- 

ure space. According to Luo et al. (2016) , a data set D is quadrati- 

ally separable if there exists W ∈ S 
n , b ∈ R 

n , and c ∈ R such that 

1 

2 

x (i ) T W x (i ) + b 

T 
x (i ) + c > 0 

(
i ∈ M 

+ ), 
1 

2 

x (i ) T W x (i ) + b 

T 
x (i ) + c < 0 

(
i ∈ M 

−)
. (4) 

Given a quadratically sparable data set, the quadratic separa- 

ion surface obtained from the quadratic surface SVM (QSSVM) 
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Fig. 2. Original margin vs G-margin. 
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 Luo et al., 2016 ) is represented by f ( x ) � 

1 
2 x 

T W x + b T x + c = 0 . A

ypical model is the following SQSSVM model, which not only min- 

mizes the sum of relative geometrical margins of points but also 

dopts the soft-margin idea ( Luo et al., 2016 ): 

min 

N ∑ 

i =1 

‖ W x (i ) + b ‖ 

2 
2 + C 

N ∑ 

i =1 

ξi 

s.t. y (i ) 
(

1 

2 

x (i ) T W x (i ) + x (i ) T b + c 

)
� 1 − ξi , i = 1 , · · · , N, 

W ∈ S 
n , b ∈ R 

n , c ∈ R , ξ ∈ R 

N 
+ . (SQSSVM) 

In summary, SSVM model yields a linear separation func- 

ion H( x ) = u 

T x + d, with u ∈ R 

n , d ∈ R , while SQSSVM yields a

uadratic separation function Q( x ) = 

1 
2 x 

T W x + b T x + c, with W ∈ 

 

n , b ∈ R 

n , c ∈ R . The SVM with Guassian kernel yields a highly

onlinear separation generated by the Gaussian kernel function. It 

as studied in Luo et al. (2016) and Mousavi et al. (2019) that 

uadratic surfaces work more effectively in classification than a 

yperplane. In this paper, we will investigate the performance of 

tilizing a special quartic surface for binary classification. 

. Double well potential support vector machine 

In this section, we first introduce the double well potential 

unction and then propose a new type of margin for measuring 

he distance between two classes. Finally, based on the new type 

f margin, a double well potential SVM model is proposed. 

.1. Double well potential function 

Double well potential function is a special quartic function of 

nterest in quantum mechanics, field theories and other research 

reas. It is defined as follows. 

efinition 3.1 (Double Well Potential (DWP) function) . Let F be a 

eal-value function defined on R 

n such that 

 ( x ) = 

1 

2 

(
1 

2 

‖ B x − c ‖ 

2 
2 − d 

)2 

+ 

1 

2 

x T A x + b 

T 
x + q. (5) 

here B ∈ R 

m ×n , c ∈ R 

m , d ∈ R , A ∈ S 
n , b ∈ R 

n , q ∈ R . 

Three examples of DWP functions are given in Fig. 1 . 

Given a DWP function f, and any data point ( x (i ) , y (i ) ) ∈ D de-

oted by (2) , define 

(i ) � 

1 ‖ B x (i ) − c ‖ 

2 
2 − d. (6) 
2 

4 
Define s (i ) � lvec ( x (i ) ) , w B � hvec ( B 

T B ) , w Bc � c T B and c d � 

1 
2 c 

T c − d, then we have ξ
(i ) = s (i ) T w B − x (i ) T w Bc + c d . Define z (i ) � 

 s (i ) T , x (i ) T , 1] T and w ξ � [ w 

T 
B 
, w 

T 
Bc 

, c d ] 
T . Therefore, 

 ( x (i ) ) = 

˜ F 

([
z (i ) 

x (i ) 

])
� 

1 

2 

z (i ) T w ξ w ξ
T z (i ) + 

1 

2 

x (i ) T A x (i ) + b 

T 
x (i ) + q. 

(7) 

here function 

˜ F : R 

n (n +1) 
2 

+2 n +1 → R has a quadratic term with re- 

pect to z (i ) on R 

n (n +1) 
2 

+ n +1 and another quadratic term with re- 

pect to x (i ) on R 

n . With the similar vectorization procedure, de- 

ote l � 

n (n +1) 
2 + n + 1 , and 

 W 

� hvec ( w ξ w 

T 
ξ ) ∈ R 

l (l +1) / 2 , w A � hvec ( A ) ∈ R 

n (n +1) / 2 , 

η(i ) � lvec ( z (i ) ) ∈ R 

l (l +1) / 2 . 

 � 

[
w W 

w A 

]
∈ R 

l (l +1)+ n (n +1) 
2 , r (i ) � 

[
η(i ) 

s (i ) 

]
∈ R 

l (l +1)+ n (n +1) 
2 . (8) 

onsequently, F ( x (i ) ) equals to a linear function F l with respect to 

 

(i ) and x (i ) in R 

l (l +1)+ n (n +1) 
2 

+ n , i.e., 

 ( x (i ) ) = F l 

([
r (i ) 

x (i ) 

])
� r (i ) T v + x (i ) T b + q. (9) 

n other words, we have following result: 

heorem 3.1. A DWP function in R 

n is equivalent to a linear function 

n R 

l (l +1)+ n (n +1) 
2 

+ n , where l = 

n (n +1) 
2 + n + 1 . 

emark. As a highly nonlinear function, the DWP function rep- 

esents some types of 4th order polynomial functions, which are 

ommonly seen in physics and maybe in some aspects of real life. 

oreover, the form of DWP function is an embedded quadratic 

unction of the quadratic term so that it is more tractable than 

ther 4th order polynomial function. Hence, the DWP surface may 

e amenable for the highly nonlinear classifications. 

.2. G-margin 

To the best of our knowledge, the only margin adopted by the 

ernel-free SVM models is the relative geometric margin ( Dagher, 

008; Luo et al., 2016; Mousavi et al., 2019 ). However, this margin 

s calculated by utilizing the positions of all data points, so the 

fficiency of these models may be sensitive to the data size. In this 
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ubsection, we propose a new way to measure the margin between 

wo classes of data, which has a simpler form while only using the 

ocal information of a separating surface. It may help overcome the 

rawbacks of the relative geometric margin. 

The G-margin between two classes, illustrated for an example 

n R 

2 in Fig. 2 b, is proposed here to separate the data points in R 

n 

ith a quadratic separation surface S, where 

 � { x ∈ R 

n | Q( x ) = 0 }; Q : R 

n → R , x �→ 

1 

2 

x T W x + b 

T 
x + c. 

(10) 

For any x ∈ S, denote its normal vector by ˆ n ( x ) � 

∇Q( x ) 
‖∇Q( x ) ‖ 2 . Let

he straight line in the direction of ˆ n ( x ) intersect with Q( x ) = 1

nd Q( x ) = −1 at x + and x −, respectively. Define γ + ( x ) � ‖ x + −
 ‖ 2 and γ −( x ) � ‖ x − − x ‖ 2 . In this way, 

 

+ = x + γ + ( x ) ̂  n ( x ) , Q( x + ) = 1 

 

− = x − γ −( x ) ̂  n ( x ) , Q( x −) = −1 (11) 

efinition 3.2 (G-margin on a quadratic surface) . Given a 

uadratic surface S denoted by (10) . For any x ∈ S, the G-margin 

t x is defined as 

( x ) � γ ( x ) − + γ ( x ) −. 

The next lemma shows that G-margin is highly related to the 

ingular values of W . Notice that W is a symmetric matrix, there 

xists an orthonormal matrix U ∈ R 

n ×n so that the singular value 

ecomposition of W is 

 = U �U 

T (12) 

here � = Diag (σ1 , . . . , σn ) is a diagonal matrix of all singular 

alues of W . Remember that σi ’s are ordered decreasingly, i.e., 

1 � · · · � σn . 

emma 3.2. Given a quadratic surface S denoted by (10) , for any x ∈ 

, there exists R ( x ) ∈ [ σn , σ1 ] such thats 

1 

γ ( x ) 
� 

√ 

R ( x ) 

2 

. (13) 

here σ1 and σn are the biggest and the smallest singular values of 

atrix W , respectively. 

The proof is in A.1 . 

emma 3.3. Given matrix A ∈ R 

n ×n , there exist 0 < γ1 � γ2 such

hat 

1 ‖ A ‖ 2 � ‖ A ‖ F � γ2 ‖ A ‖ 2 . (14) 

(14) is a specific case of the equivalence of matrix norms. The 

roof can be found in Meyer (20 0 0) . 

.3. Double Well Potential SVM model 

The basic idea of SVM models for binary classification is to sep- 

rate the two classes with the maximum margin. To the best of 

ur knowledge, there is no margin defined for a quartic separation 

urface in literature. Remember that DWP function can be trans- 

ormed to a quadratic form in Section 3.1 . Since G-margin is de- 

ned for the quadratic separation surface, it is possible to extend 

-margin for the DWP separation surface. Here, we first introduce 

 new quadratic surface SVM model adopting G-margin, then pro- 

ose a kernel-free DWPSVM model after extending G-margin to 

he DWP separation surface. 

Given any quadratic surface S as defined in (10) , denote the G- 

argin at z ∈ S by γ ( z ) as in Definition 3.2 . In order to maximize

he G-margin at z , it is equivalent to minimize 1 /γ ( z ) . By reaching
5 
 similar goal, we minimize the maximum of the bound provided 

y Lemma 3.2 as follows. 

min 

W ∈ S n 
 ∈ R n ,c∈ R 

max 
z ∈S 

√ 

R ( z ) 

2 

(15) 

Since 
√ 

R ( z ) ∈ [ σn , σ1 ] and σ1 = ‖ W ‖ 2 , a similar goal can be

eached by solving the following optimization problem (16) : 

min 

W ∈ S n 
 ∈ R n ,c∈ R 

1 

2 

‖ W ‖ 

1 / 2 
2 

(16) 

In this way, a quadratic surface SVM model can be formulated 

ith G-margin. Given a data set D denoted by (2) , a kernel-free 

odel GQSVM is formulated as follows. 

min 

1 

2 

‖ W ‖ 

2 
F 

s.t. y (i ) 
(

1 

2 

x (i ) T W x (i ) + b 

T 
x (i ) + c 

)
� 1 , i = 1 , . . . , N. 

W ∈ S 
n , b ∈ R 

n , c ∈ R (GQSVM) 

Notice that, the matrix � 2 -norm is substituted by the Frobe- 

ious norm in the objective. By Lemma 3.3 , ‖ W ‖ F is equivalent to 

 W ‖ 2 . In addition, the F-norm helps vectorize the matrix variable 

nto a vector variable, which makes it easier for implementation. 

Based on a similar idea, we apply G-margin to propose a DW- 

SVM model. Moreover, a regularization term ‖ b ‖ 2 
2 

is added to 

acilitate the design of an SMO algorithm for the following DW- 

SVM model. Notice that, other than the measurement of mar- 

in, GQSVM does not produce a soft margin as the SQSSVM model 

oes. To allow the location of data points to violate constraints, 

he similar soft-margin idea is adopted by adding a slack vector 

= [ ζ1 , . . . , ζN ] 
T . Denote the DWP surface by S D as the following:

 D � { x ∈ R 

n | F ( x ) = 0 } . (17)

here F is a DWP function defined in (5) . Notice that F has a

uadratic form 

˜ F as defined in (7) . Denote W = w ξ w 

T 
ξ

and use a 

imilar idea of GQSVM , we apply G-margin on S D and propose the 

ollowing DWPSVM model with a soft margin: 

min 

1 

2 

∥∥∥∥
[

W 0 

0 A 

]∥∥∥∥
2 

F 

+ 

1 

2 

‖ b ‖ 

2 
2 + C 

N ∑ 

i =1 

ζi 

s.t. y (i ) 
(

1 

2 

z (i ) T W z (i ) + 

1 

2 

x (i ) T A x (i ) + b 

T 
x (i ) + q 

)
� 1 − ζi , i = 1 , . . . , N 

rank ( W ) = 1 

W ∈ S 
l , A ∈ S 

n , b ∈ R 

n , q ∈ R , ζ ∈ R 

N 
+ . (DWPSVM) 

The rank-1 constraint is non-convex, which makes problem 

DWPSVM) difficult to be implemented. To make it computation- 

lly solvable, (DWPSVM) is relaxed to be (DWPSVM-relaxed) by 

ropping the rank-1 constraint as below. In literature, dropping 

he non-convex rank-1 constraint to make a hard problem easy to 

olve is a common practice. For example, in Luo, Ma, So, Ye, and 

hang (2010) , the rank-1 constraint is dropped to convexify the 

roblem during the process of semidefinite relaxation. 

min 

1 

2 

∥∥∥∥
[

W 0 

0 A 

]∥∥∥∥
2 

F 

+ 

1 

2 

‖ b ‖ 

2 
2 + C 

N ∑ 

i =1 

ζi 

s.t. y (i ) 
(

1 

2 

z (i ) T W z (i ) + 

1 

2 

x (i ) T A x (i ) + b 

T 
x (i ) + q 

)
� 1 − ζi , i = 1 , . . . , N 

W ∈ S 
l , A ∈ S 

n , b ∈ R 

n , q ∈ R , ζ ∈ R 

N 
+ . (DWPSVM-relaxed) 
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Besides, with definitions of (1) and (8) , problem (DWPSVM- 

elaxed) can be reformulated as an equivalent convex QP problem 

 DWPSVM’ ): 

min 

1 
2 

w 

T 
W 

H l w W 

+ 

1 
2 

w 

T 
A H n w A + 

1 
2 
‖ b ‖ 2 2 + C 

N ∑ 

i =1 

ζi 

s.t. y (i ) 

(
η(i ) T w W 

+ s (i ) T w A + x (i ) T b + q 

)
� 1 − ζi , i = 1 , . . . , N 

w W 

∈ R 

l (l +1) 
2 , w A ∈ R 

n (n +1) 
2 , b ∈ R 

n , q ∈ R , ζ ∈ R 

N 
+ . 

( DWPSVM 

′ ) 

. Theoretical properties of DWPSVM 

In this section we study some theoretical properties of the pro- 

osed DWPSVM model. For the convenience of analysis, we refor- 

ulate problem ( DWPSVM’ ) as the following equivalent problem 

 DWPSVM”) by utilizing the definitions of (8) and (9) : 

min 

1 
2 
v T H v + 

1 
2 
‖ b ‖ 

2 
2 + C 

N ∑ 

i =1 

ζi 

s.t. y (i ) 

(
r (i ) T v + x (i ) T b + q 

)
� 1 − ζi , i = 1 , . . . , N 

v ∈ R 

l (l +1)+ n (n +1) 
2 , b ∈ R 

n , q ∈ R , ζ ∈ R 

N 
+ . 

( DWPSVM 

′′ ) 

here H := 

[
H l 0 

0 H n 

]
, with H l and H n being defined according to 

1) . It is clear that H � 0 so that problem ( DWPSVM”) is a convex

uadratic program (QP). Given a data set D denoted as (2) , any 

uple ( v , b , q, ζ) satisfying 

 ∈ R 

l (l +1)+ n (n +1) 
2 , b ∈ R 

n , q ∈ R , ζi = max 

{
0 , 1 

− y (i ) 
(

r (i ) T v + x (i ) T b + q 

)}
, ∀ i = 1 , . . . , N. 

s a feasible solution. Moreover, the objective function is bounded 

elow by zero. Thus, problem ( DWPSVM”) achieves a finite opti- 

um for any given data set D denoted as (2) . 

Next, we study the uniqueness of the optimal solution to prob- 

em ( DWPSVM”) with respect to v and b . 

heorem 4.1. ( v ∗, b ∗) -uniqueness For any given data set D de- 

oted by (2) , let ( v ∗, b ∗, q ∗, ζ∗) be an optimal solution to problem

DWPSVM”) , then ( v ∗, b ∗) is unique. 

roof. The proof is in A.2 . �

emark. The uniqueness of ( v ∗, b ∗) plays an important role in 

haracterizing the pattern of the classifier, since various coeffi- 

ients of non-constant terms of a polynomial give rise to various 

amilies of quartic surfaces. Even though the optimal solution may 

ot be unique, different optimal solutions only vary by intercepts. 

hus, for any given data set, the main characteristics of the sepa- 

ating DWP surface are uniquely determined by the optimal solu- 

ion of the problem ( DWPSVM”) with respect to the variable v and 

 . 

Similar to other SVM models, DWPSVM has the property that 

ts optimal solution is highly related to the support vectors. Ac- 

ording to Vapnik (2013) , the support vectors produced by model 

SSVM) are the data points for which in inequality constraints 

qualities are achieved. Similarly, we bring the definition of sup- 

ort vectors of model ( DWPSVM”) as follows. 

efinition 4.1 (Support Vector of DWPSVM”) . Given a data set D
enoted as (2) and assume that { x ∈ R 

n | g( x ) = 0 } is the quartic
6 
urface that obtained by solving problem (DWPSVM”) . Then x (k ) is 

alled a support vector if g( x (k ) ) = y (k ) for any ( x (k ) , y (k ) ) ∈ D. 

To study the property of support vectors representation, we 

rite the dual of problem ( DWPSVM”) 

min −
N ∑ 

i =1 

αi + 

1 

2 

N ∑ 

i =1 

N ∑ 

j=1 

y (i ) y ( j) αi α j 

(
r (i ) T H 

−1 r ( j) + x (i ) T x ( j) 
)

s.t. 

N ∑ 

i =1 

y (i ) αi = 0 . 

0 � αi � C, i = 1 , . . . , N. 

( DDWPSVM 

′′ ) 

Since both of problem ( DWPSVM”) and problem ( DDWPSVM”) 

re convex QPs, no duality gap exists between them. The KKT op- 

imality conditions for them are listed as the following: 

α∗
i 

(
1 − ζ ∗

i 
− y (i ) 

(
r (i ) T v ∗ + x (i ) T b 

∗ + q ∗
))

= 0 , i = 1 , . . . , N 

(C − α∗
i 
) ζ ∗

i 
= 0 , i = 1 , . . . , N 

1 − ζ ∗
i 

− y (i ) 

(
r (i ) T v ∗ + x (i ) T b 

∗ + q ∗
)
� 0 , i = 1 , . . . , N 

N ∑ 

i =1 

y (i ) α∗
i = 0 , ζ∗ ∈ R 

N 
+ , 0 � α∗

i � C, i = 1 , . . . , N. 

(18) 

Recall that the index set for points in data set D is M = 

 1 , . . . , N} , which can be split into the following four subsets: 

I 1 = 

{
i ∈ M| α∗

i 
= 0 

}
, I 2 = 

{
i ∈ M| 0 < α∗

i 
< C 

}
I 3 = 

{
i ∈ M| α∗

i 
= C, ζ ∗

i 
= 0 

}
, I 4 = 

{
i ∈ M| α∗

i 
= C, ζ ∗

i 
> 0 

}
. 

(19) 

It could be observed from (18) and (19) that 

• If i ∈ I 1 , then ζ ∗
i 

= 0 and the i th data point satisfies

y (i ) ( r (i ) T v ∗ + x (i ) T b ∗ + q ∗) � 1 , which indicates that point x (i ) is

inside the scope of the class. 

• If i ∈ I 2 ∪ I 3 , then ζ ∗
i 

= 0 and y (i ) ( r (i ) T v ∗ + x (i ) T b ∗ + q ∗) = 1 .

From Definition 4.1 , x (i ) is a support vector. 

• If i ∈ I 4 , then ζ ∗
i 

> 0 and y (i ) ( r (i ) T v ∗ + x (i ) T b ∗ + q ∗) < 1 . It indi-

cates that x (i ) might be a misclassified data sample. 

By Lagrangian duality theory, solving the optimality condition 

ields an relationship between primal and dual optimal solutions 

s the following: 

 

∗ = H 

−1 
∑ 

i ∈ I 2 ∪ I 3 ∪ I 4 
y (i ) α∗

i r 
(i ) , b 

∗ = 

∑ 

i ∈ I 2 ∪ I 3 ∪ I 4 
y (i ) α∗

i x 
(i ) 

 

∗ = y (i ) − r (i ) T v ∗ − x (i ) T b 

∗
, i ∈ I 2 ∪ I 3 . (20) 

emark. From (20) , we notice that the primal optimal solution is 

nly related to data points with indices in I 2 , I 3 and I 4 , which in-

lude most of the support vectors. It indicates that a new data 

oint ( x , y ) will not change the separation surface if it satisfies 

g( x ) > 1 . In other words, ( x , y ) is not only correctly classified, but

utside the margin area as well. 

Therefore, it is not necessary to re-train the DWPSVM model 

very time after a new data point enters. A precise separation sur- 

ace could last for a long time before re-training the DWPSVM 

odel. 

Since both the primal problem ( DWPSVM”) and the dual prob- 

em ( DDWPSVM”) are convex QP problems, they can be solved by 

pplying QP solvers. Notice that, problem ( DDWPSVM”) has only 

ne equality constraint with bounded variables, which is similar to 
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Table 1 

Abbreviations and solvers of tested models. 

Model Abbreviation Solver/Package Parameters 

Linear SVM SVM LIBSVM C

Soft margin quadratic surface 

SVM 

SQSSVM Gurobi C

SVM with Gaussian kernel SVM-Gauss LIBSVM (C, γ ) 

SVM with quadratic kernel SVM-Quad LIBSVM (C, r) 

Double Well Potential SVM DWPSVM LIBSVM C

Quadratic least square twin 

SVM 

QLSTSVM – (C 1 , C 2 ) 

Quadratic least square SVM QLSSVM – C

l  

{
d

o

r

p

a

a

5

s

S  

a

P  

o

Q

t

S

o  

a

b

3

h

a

l

t

D

h

s

D

i

p

c

(

i

t

S

o

i

d

t  

A  

f

o  

i  

d  

d  
he structure of DSSVM-kernel . The SMO algorithm can be applied 

o solve problem ( DDWPSVM”) after preprocessing the data as fol- 

ows. 

Given a data set D as defined in (2) , generate a data set as 

ˆ 
 � 

{(
t (i ) , y (i ) 

)∣∣∣∣t (i ) = 

[
H 

− 1 
2 r (i ) 

x (i ) 

]
, ( x (i ) , y (i ) ) ∈ D, i = 1 , . . . , N 

}
(21) 

here r (i ) is defined as (8) . Then problem ( DDWPSVM”) can be 

eformulated as the following problem ( DDWPSVM”-SMO ) to be 

olved by directly applying the SMO algorithm: 

min 

1 
2 

N ∑ 

i =1 

N ∑ 

j=1 

y (i ) y ( j) αi α j t 
(i ) T t ( j) −

N ∑ 

i =1 

αi 

s.t. 

N ∑ 

i =1 

y (i ) αi = 0 , 

0 � αi � C, i = 1 , . . . , N. 

( DDWPSVM 

′′ − SMO ) 

Denote the optimal solution of ( DDWPSVM”-SMO ) as α∗, and 

ts corresponding primal optimal solution as ( ̂ v ∗, ̂  b 
∗
, ̂  q ∗, ̂  ζ

∗
) , then 

he optimal solution ( v ∗, b ∗, q ∗, ζ∗) to problem ( DWPSVM”) is 

 

∗ = H 

− 1 
2 ˆ v ∗, b 

∗ = 

ˆ b 

∗
, q ∗ = 

ˆ q ∗, ζ∗ = 

ˆ ζ
∗
. (22) 

The convergence of the SMO algorithm is promised by Osuna’s 

heorem Osuna, Freund, and Girosi (1997) and the computational 

fficiency of the SMO algorithm on solving the soft-margin SVM 

odel is investigated in Platt (1998) . The efficiency of the SMO al- 

orithm is tested by computational experiments in Section 5 . 

. Computational experiments 

In this section, we conduct computational experiments to in- 

estigate the performance of DWPSVM on some artificial, pub- 

ic benchmark and real-life data sets. We first introduce the set- 

ings of our experiments, then the proposed DWPSVM model and 

ell-known SVM models are tested with some artificial and pub- 

ic benchmark data sets. Finally, the proposed DWPSVM model is 

xtended and applied to some benchmark and real-life credit data 

ets, by comparing to well-known SVM models. 

.1. Experiment settings 

The linear SVM model, SQSSVM model, QLSTSVM model, 

LSSVM model and SVM models with Gaussian or Quadratic ker- 

el are tested on the same data sets for comparisons with the pro- 

osed DWPSVM model. All numerical experiments are conducted 

n a computer with eight Intel(R) Core(TM) i7-2600 CPU @ 3.40gi- 

ahertz CPUs and 8gigabyte RAM. Moreover, Gurobi 8.1.1 and LIB- 

VM Chang and Lin (2011) are utilized to implement some of 

ested models, as shown in Table 1 . Since QLSTSVM model and 

LSSVM model have explicit solutions, no solver or package will be 

eeded. Notice that, the DDWPSVM”-SMO model is implemented 

or DWPSVM by utilizing the SMO algorithm in LIBSVM package. 

hroughout all tables and figures of results in this paper, each 

odel is denoted by its abbreviation name, as shown in Table 1 . 

All the data points are normalized into [0,1] to avoid the dom- 

nance of input features with greater numerical values over other 

maller values. A 10-fold cross-validation procedure is applied for 

ach experiment and each experiment is repeated ten times for 

ach model to make it statistically meaningful. 

All the possible parameters for each model listed in Table 1 are 

uned by using grid method, such as log C ∈ {−6 , −3 , . . . , 21 , 22 } ,
2 

7 
og 2 r ∈ {−4 , −3 , . . . , 3 , 4 } , log 2 γ ∈ {−4 , −3 , . . . , 3 , 4 } and log 2 C i ∈
−4 , −3 , . . . , 3 , 4 } (i = 1 , 2) . 

For all experiments on each data set, the mean and the stan- 

ard deviation of accuracy scores, the average training CPU time 

f all models and the CPU time for testing each data point are 

ecorded. Notice that, the SVM, SVM-Gauss and SVM-Quad are im- 

lemented by utilizing LIBSVM Chang and Lin (2011) python pack- 

ge, while the scripts of DWPSVM, SQSSVM, QLSTSVM and QLSSVM 

re written from scratch. 

.2. Tests on artificial data 

In order to show and compare the flexibility of separation 

urfaces produced by the DWPSVM model and other benchmark 

VM models, Fig. 3 a to 3 h are displayed. Each data set is plotted

nd separated by using different separation surfaces. Besides DW- 

SVM, the data in Fig. 3 a, 3 c, 3 e, 3 g and 3 i is classified by the

ther four kernel-free benchmark SVM models (SQSSVM, QLSTSVM, 

LSSVM and SVM), and the data in other figures is classified by 

he two benchmark kernel-based SVM models (SVM-Gauss and 

VM-Quad). 

From these figures, we have the following observations: SVM 

nly works well when the data is linearly separable, as in Fig. 3 a

nd 3 b. SQSSVM, QLSTSVM, QLSSVM and SVM-Quad work well for 

oth linearly and quadratically separable data sets, as in Fig. 3 c and 

 d, but their performance are not satisfying when the data sets 

ave highly nonlinear patterns. In Fig. 3 e to 3 h, both of DWPSVM 

nd SVM-Gauss show the flexibility to capture the highly non- 

inear classifiers, but the performance of DWPSVM is better than 

hat of SVM-Gauss. In summary, these figures indicate that the 

WPSVM model, compared with other benchmark SVM models, 

as stronger potential and flexibility to classify highly nonlinearly- 

eparable data sets. 

Since the DWP separation surface produced by the proposed 

WPSVM model is a special type of degree-4 polynomial surface, 

t may also be produced by the SVM model with a high-degree 

olynomial kernel,(e.g. the 4th order polynomial kernel). However, 

ompared with DWPSVM, SVM with degree-4 polynomial kernel 

SVM-Q4) has two more parameters to be tuned during the train- 

ng process. Hence, the SVM-Q4 model may not be as practical as 

he DWPSVM model, because it takes much more effort to train 

VM-Q4 than that to train DWPSVM. 

To further compare the performance of DWPSVM to that of 

ther SVM models, we generated some artificial data sets, includ- 

ng the mexican hat (MH) data, the wave data and the multi-petal 

ata. For MH data, two classes of data points are generated respec- 

ively on each side of a MH-shaped surface on R 

k (k = 2 , 3 , 4 , 5) .

n example of MH data in R 

2 is shown in Fig. 3 e and 3 f. Similarly,

or the wave data, the data points are generated on the two sides 

f a sine curve in R 

2 . In addition, we generate a six-petal data set

n R 

2 and a eight-petal data set in R 

3 . An example of the six-petal

ata set is shown in Fig. 3 g and 3 h. The description of all artificial

ata sets can be found in Table 2 . For each data set, n is the num-
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Fig. 3. DWPSVM vs kernel and kernel-free SVMs. 

Table 2 

Artificial data sets. 

Data set MH2d MH3d MH4d MH5d Six-petal 2d Eight-petal 3d Wave 2d 

n 2 3 4 5 2 3 2 

Sample size ( N 1 vs N 2 ) 45 vs 45 100 vs 100 200 vs 200 450 vs 450 55 vs 55 120 vs 130 49 vs 51 

Table 3 

MH2d, MH3d, MH4d and MH5d results. 

Model Accuracy score % 

MH2d MH3d MH4d MH5d 

mean std min max mean std min max mean std min max mean std min max 

DWPSVM 92.81 8.44 75.00 100.00 91.45 6.49 70.00 100.00 91.85 2.94 80.00 100.00 91.18 2.75 81.11 96.67 

SQSSVM 44.38 13.85 25.00 75.00 47.00 11.12 20.00 75.00 51.15 8.35 25.00 70.00 51.72 4.37 43.33 57.78 

SVM 47.19 15.63 12.50 87.50 44.00 8.04 25.00 60.00 50.65 7.67 32.50 70.00 51.75 3.65 44.44 61.11 

SVM-Gauss 86.88 11.65 62.50 100.00 84.70 8.28 60.00 100.00 81.60 6.36 67.50 97.50 79.94 4.61 70.00 87.78 

SVM-Quad 45.31 13.48 12.50 75.00 45.10 9.04 20.00 65.00 49.45 8.24 32.50 72.50 51.28 4.76 42.22 65.56 

QLSTSVM 50.94 8.67 25.00 75.00 49.40 6.90 25.00 60.00 50.75 6.59 35.00 67.50 52.25 5.06 42.22 62.22 

QLSSVM 47.50 13.03 12.50 75.00 46.00 11.01 20.00 75.00 49.45 7.32 25.00 70.00 53.00 5.14 43.33 68.89 

b

a

i

F

i  

T

 

t

acceptable. 
er of features. The number of data points in class 1 and class 2 

re denoted as N 1 and N 2 , respectively. 

The mean and standard deviation of accuracy scores are shown 

n Tables 3 and 4 and the corresponding box plots are shown in 

ig. 4 . Besides, the training CPU time of all tested models is listed 

n Table 5 . The testing CPU time on each data point is listed in

able 12 . 

From Tables 3 and 5 and Fig. 4 , there are a few observations as

he following: 

• Comparing with all other tested SVM models, the proposed 

DWPSVM shows the dominant and the stabler performance 

on each artificial data set in terms of classification accuracy. 

Moreover, since all artificial data sets are highly nonlinearly- 

separable, the results from the experiments verify the flexibil- 

ity of separation surfaces produced by the proposed DWPSVM 

model. 
8 
• All the SVM models are tested on mexican hat data sets in 

different dimensional Euclidean spaces. For these data sets, 

DWPSVM produces much more accurate classification than all 

other tested benchmark models. Moreover, Fig. 4 h shows that, 

the accuracy improvement of DWPSVM over the second best 

model SVM-Gauss, is increasing as the dimension of data set 

increases. It suggests that, in terms of classification accuracy, 

the DWPSVM model is a better choice when the data set has 

more features. 
• Table 5 shows that it takes both of the proposed DWPSVM 

model and SVM-Gauss more CPU time to generate highly non- 

linear separation surfaces. Although the CPU time of DW- 

PSVM is longer than that of SVM-Gauss, the accuracy advan- 

tage of DWPSVM over SVM-Gauss is obvious, which makes 

the sacrifice in efficiency of the proposed DWPSVM model 
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Table 4 

Six-petal 2d, Eight-petal 3d and Wave 2d results. 

Model Accuracy score % 

Six-petal 2d Eight-petal 3d Wave 2d 

mean std min max mean std min max mean std min max 

DWPSVM 89.00 10.01 70.00 100.00 89.20 6.47 72.00 100.00 95.75 6.36 80.00 100.00 

SQSSVM 52.50 15.79 10.00 80.00 57.35 7.03 40.00 72.00 77.75 14.05 40.00 100.00 

SVM 54.88 16.84 10.00 90.00 51.85 7.78 36.00 72.00 76.25 14.44 40.00 100.00 

SVM-Gauss 82.63 11.99 50.00 100.00 82.95 6.36 68.00 96.00 93.25 8.59 70.00 100.00 

SVM-Quad 53.25 14.91 10.00 90.00 55.05 7.54 32.00 76.00 71.25 15.22 20.00 100.00 

QLSTSVM 46.50 10.08 10.00 70.00 54.95 7.84 28.00 72.00 75.00 15.53 30.00 100.00 

QLSSVM 49.00 15.48 10.00 90.00 55.20 8.57 32.00 76.00 77.25 15.02 30.00 100.00 

Fig. 4. Results on artificial data sets. 

Table 5 

Artificial data training CPU time. 

Model Training CPU time (s) 

MH2d MH3d MH4d MH5d Six-petal 2d Eight-petal 3d Wave 2d 

DWPSVM 2.721 4.864 17.633 39.010 1.493 3.040 0.034 

SQSSVM 0.041 0.085 0.257 0.589 0.041 0.127 0.038 

SVM < 0.001 < 0.001 0.002 0.007 < 0.001 < 0.001 < 0.001 

SVM-Gauss 1.210 3.361 12.975 26.307 0.499 1.148 0.019 

SVM-Quad < 0.001 0.002 0.008 0.047 < 0.001 0.035 < 0.001 

QLSTSVM < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

QLSSVM 0.041 0.124 0.327 0.941 0.050 0.156 0.047 

Table 6 

Public benchmark data sets. 

Small-sized Medium-sized Large-sized 

data set n sample size ( N 1 vs N 2 ) data set n sample size ( N 1 vs N 2 ) data set n sample size ( N 1 vs N 2 ) 

Wine 13 71 vs 59 SVMguide3 20 947 vs 296 Cardiotocography 21 1655 vs 471 

Glass 9 163 vs 51 Brain Tumor 17 1178 vs 97 Abalone 8 1407 vs 1323 

Liver Disorders 6 199 vs 142 Car Evaluation 6 1210 vs 384 SVMguide1 4 2000 vs 1089 

Wholesale 7 298 vs 142 

Tax Payer 9 336 vs 331 

5

D
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s  

e
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m
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.3. Tests on public benchmark data 

Besides the experiments on artificial data sets, the proposed 

WPSVM model is applied to some public benchmark data sets 

grouped by size). Some basic information of these benchmark data 

ets is listed in Table 6 . Similar to that in Section 5.2 , all the mod-
9 
ls are respectively tested on each benchmark data set and the 

umerical results are listed in Tables 7–10 . For each tested SVM 

odel, the training CPU time and testing CPU time are listed in 

ables 11 and 12 , respectively. We also recorded the median of 

ptimal parameters of corresponding models on each benchmark 

ata set, which can be found in Appendix B . 
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Table 7 

Wine, glass, liver disorders results. 

Model Accuracy score % 

Wine Glass Liver Disorders 

mean std min max mean std min max mean std min max 

DWPSVM 98.33 3.70 83.33 100.00 93.38 4.97 76.19 100.00 72.90 7.07 57.58 90.91 

SQSSVM 97.64 4.63 83.33 100.00 92.90 5.35 76.19 100.00 71.28 6.95 54.55 90.91 

SVM 97.36 4.20 83.33 100.00 92.81 5.31 80.95 100.00 69.60 7.25 42.42 84.85 

SVM-Gauss 97.64 4.63 83.33 100.00 92.43 5.11 76.19 100.00 72.59 7.05 54.55 87.88 

SVM-Quad 97.36 4.47 83.33 100.00 92.33 5.15 80.95 100.00 72.05 6.76 54.55 87.88 

QLSTSVM 90.69 5.96 75.00 100.00 91.05 5.55 76.19 100.00 72.42 6.63 60.61 90.91 

QLSSVM 96.94 5.08 83.33 100.00 92.86 5.00 80.95 100.00 72.46 6.87 57.58 87.88 

Table 8 

Wholesale, tax payer results. 

Model Accuracy score % 

Wholesale Tax Payer 

mean std min max mean std min max 

DWPSVM 91.93 3.63 79.07 100.00 54.45 4.35 40.91 62.12 

SQSSVM 90.42 3.97 81.40 100.00 50.47 4.48 39.39 63.64 

SVM 91.40 3.82 79.07 97.67 50.94 4.77 39.39 63.64 

SVM-Gauss 91.60 3.85 81.40 100.00 50.36 5.44 39.39 63.64 

SVM-Quad 91.26 4.02 79.07 100.00 52.70 5.02 40.91 66.67 

QLSTSVM 90.79 3.66 81.40 97.67 50.42 5.08 34.85 60.61 

QLSSVM 89.65 4.34 79.07 100.00 51.17 5.81 36.36 68.18 

Table 9 

SVMguide3, brain tumor and car evaluation results. 

Model Accuracy score % 

SVMguide3 Brain Tumor Car Evaluation 

mean std min max mean std min max mean std min max 

DWPSVM 84.82 3.13 78.05 92.68 97.56 1.40 92.06 100.00 98.63 0.87 96.86 100.00 

SQSSVM 84.17 3.42 76.42 91.06 93.67 1.29 90.48 96.83 96.62 1.48 92.45 100.00 

SVM 82.89 3.00 75.61 88.62 97.33 1.30 93.65 100.00 85.94 2.64 77.36 91.82 

SVM-Gauss 84.55 3.12 76.42 91.06 96.06 1.84 91.27 99.21 98.52 0.87 96.23 100.00 

SVM-Quad 84.23 3.05 77.24 91.06 95.93 2.08 90.48 99.21 93.46 1.86 88.68 98.74 

QLSTSVM 82.70 2.82 75.61 87.80 96.58 1.77 91.27 100.00 94.39 1.80 90.57 98.11 

QLSSVM 83.13 3.17 76.42 89.43 96.60 1.82 92.86 100.00 94.40 1.79 89.94 98.11 

Table 10 

Cardiotocography, abalone, SVMguide1 results. 

Model Accuracy score % 

Cardiotocography Abalone SVMguide1 

mean std min max mean std min max mean std min max 

DWPSVM 94.17 1.63 90.57 97.17 79.08 2.74 72.79 85.66 96.85 0.90 94.16 98.70 

SQSSVM 92.78 2.06 88.68 96.23 77.89 3.08 69.49 84.56 96.64 0.96 93.51 99.03 

SVM 90.59 2.13 84.91 93.87 77.73 3.14 68.38 85.29 95.39 1.03 93.18 97.73 

SVM-Gauss 93.99 1.38 91.51 97.64 78.68 2.79 71.69 84.56 96.69 0.90 93.83 99.03 

SVM-Quad 93.09 2.00 89.15 96.70 78.46 3.00 70.22 83.46 96.44 0.92 94.16 98.38 

QLSTSVM 92.64 1.75 88.68 95.75 78.62 2.83 70.96 84.56 95.11 1.06 92.53 97.73 

QLSSVM 93.02 1.66 89.15 95.28 78.61 2.81 70.96 85.66 94.77 1.03 91.23 97.08 

Table 11 

Benchmark data training CPU time. 

Model Small-sized Medium-sized Large-sized 

Wine Glass Liver Disorders Wholesale Tax Payer SVMguide3 Brain Tumor Car Evaluation Cardioto- cography Abalone SVMguide1 

(13, 130) (9, 214) (6, 341) (7, 440) (9, 667) (20, 1243) (17, 1275) (6, 1594) (21, 2126) (8, 2730) (4, 3089) 

DWPSVM 0.036 0.010 0.040 0.035 0.583 19.991 4.535 0.190 18.270 7.165 0.192 

SQSSVM 0.021 0.024 0.332 0.014 0.768 9.108 10.636 0.045 9.342 3.926 0.115 

SVM < 0.001 < 0.001 0.004 0.001 0.011 2.423 0.014 0.022 0.053 0.207 0.031 

SVM-Gauss < 0.001 < 0.001 0.006 0.001 0.014 0.456 0.013 0.034 0.228 0.687 0.083 

SVM-Quad < 0.001 < 0.001 0.018 0.004 0.010 0.165 0.009 0.065 0.069 2.053 0.047 

QLSTSVM 0.007 0.002 < 0.001 < 0.001 0.002 0.031 0.018 0.001 0.021 0.001 0.001 

QLSSVM 0.631 0.535 0.327 0.588 1.247 15.361 6.142 1.497 12.721 4.840 2.152 

10 
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Table 12 

Testing CPU time (both artificial and public benchmark data sets.). 

DWPSVM SQSSVM SVM SVM-Gauss SVM-Quad QLSTSVM QLSSVM 

Testing CPU time 10 −4 10 −5 < 10 −5 < 10 −5 < 10 −5 < 10 −5 10 −5 
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From Tables 7–12 , the following observations can be 

ummarized: 

• The proposed DWPSVM model produces more accurate classifi- 

cation than other tested SVM models on all tested benchmark 

data sets. It shows that the proposed DWPSVM model is able 

to classify the data sets in different sizes properly. In addition, 

the DWPSVM also produces the smallest standard deviation on 

most of the tested benchmark data sets, which implies that 

the proposed DWPSVM model is more stable than other tested 

models for binary classification. 
• For some data sets (such as the Brain Tumor data), the second 

most accurate model is linear SVM; For some data sets (such 

as Wine, Glass and Tax Payer data), the second most accurate 

tested models produce the quadratic separation surfaces; For 

all other tested benchmark data sets, the second most accurate 

model is SVM-Gauss, which produces nonlinear classifiers. Nev- 

ertheless, they are all outperformed by DWPSVM, which indi- 

cates that the DWPSVM model may classify the data sets with 

different shapes of separation surfaces. 
• From the training CPU time recorded in Table 11 , the training 

efficiency of the proposed DWPSVM on small-sized data sets 

is satisfying, as the CPU time of DWPSVM is at least in the 

same order as that of SQSSVM. For medium-sized and large- 

sized data sets, even though the training CPU time of DWPSVM 

is longer than that of other tested models, it is still acceptable. 

Compared with other tested SVM model, the proposed DW- 

PSVM model is only 1–2 orders of magnitude slower for most 

medium-sized and large-sized data sets. Moreover, for all tested 

benchmark data sets including large-sized ones, the CPU time 

of DWPSVM is still less than twenty seconds, and the mean 

accuracy score of DWPSVM is higher than that of the second 

most accurate tested SVM model by the value between 0.2% 

and 1.75% for most benchmark data sets. Although this accuracy 

advantage by DWPSVM is not very obvious, it may be competi- 

tive and valuable to some practical applications. 
• In practical applications, the training process is usually com- 

pleted before forecasting. The computational time (i.e. the test- 

ing CPU time) of forecasting procedure by using DWPSVM 

model is as short as that of other tested SVM model. 

.4. Application to credit scoring 

The financial institutions suffered heavy losses from loan de- 

aults during the financial crisis. To reduce the credit risk, effective 

redit scoring methods have been utilized by the financial institu- 

ions. As the widely-used technique, credit scoring helps the lender 

ake better credit granting decisions. The objective of quantitative 

redit scoring models is to accurately distinguish the good appli- 

ants from applicants with potential loan defaults ( Baesens et al., 

003 ), which can be achieved by binary classification methods. 

ence, an accurate classifier is essential in credit scoring. 

In this subsection, we first introduce the credit data sets. Then 

he proposed DWPSVM model is extended and applied to four pre- 

rocessed credit data sets, as well as all other tested SVM models. 

.4.1. Two different types of credit data 

Two types of credit data sets are utilized. One type includes 

ersonal credit information, such as the German credit data (GCD) 

 Dua & Graff, 2017 ), the Japanese credit data (JCD) ( Dua & Graff,
11 
017 ) and the customer credit applications (CCA) data ( Quinlan, 

987 ). The other type includes corporate credit information, such 

s the Chinese corporate credit data (CCC) ( Luo, Yan, & Tian, 2020 ).

he basic information of these data sets is displayed in Table 13 . 

ore details about the credit data sets can be found in Appendix B .

.4.2. Data preprocessing 

To reduce the impact of irrelevant features, we adopt two types 

f feature weighting strategies: the t-test based weighting strategy 

nd the entropy based weighting strategy ( Zhou, Lai, & Yen, 2009 ). 

iven a data set, the t-test based weight and entropy based weight 

or feature j is defined by (23) and (24) , respectively. Notice that, 

or the CCA data, there is no real-life meaning of data features from 

he source, so we convert each category to a unique integer value 

or the same categorical feature. 

¯
 j = 

| μ+ 
j 

− μ−
j 
| √ 

σ+ 
j 

2 

N + + 

σ−
j 

2 

N −

, w j = 

w̄ j ∑ n 
k =1 w̄ k 

, j = 1 , . . . , n. (23) 
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 j = 

w̄ j ∑ n 
k =1 w̄ k 

, j = 1 , . . . , n. (24) 

here μ+ 
j 

and σ+ 
j 

are the mean and the standard deviation of the 

jth feature of data points with positive labels, respectively; μ−
j 

and 

−
j 

are the mean and the standard deviation of the those with neg- 

tive labels, respectively. Recall that N 

+ and N 

− are the number of 

ata points with positive and negative labels, respectively. Notice 

hat, there are other strategies for handling credit data features in- 

luding principal component analysis and other feature selection 

ethods in Hajek and Michalak (2013) and Maldonado, Pérez, and 

ravo (2017) . According to Zhou et al. (2009) and Luo et al. (2020) ,

-test based feature weighting strategy is more effective for credit 

coring than principal component analysis and the entropy-based 

eature weighting strategy. And in Tsai (2009) , the t-test based fea- 

ure selection strategy is shown to be preferable in the related field 

f credit score forecasting. 

.4.3. Numerical experiments on credit data sets 

As we discussed before, an accurate classification tool is impor- 

ant for credit scoring. The area under the receiver operating char- 

cteristics (ROC) curve, denoted as AUC, is a measure that captures 

he general behavior of a classifier regardless of the classification 

hreshold values ( Zhou et al., 2009 ). It is an alternative measure 

hat helps decision makers to select a proper classification tool. 

iven a separation surface { f ( x ) = 0 | x ∈ R 

n } , the AUC can be cal-

ulated by the following: 

UC = 

∑ 

i ∈M 

+ 
∑ 

j∈M 

− 1 f ( x (i ) ) > f ( x ( j) ) 

N 

+ N 

− . (25) 

here 1 is the indicator function. 

In addition to the proposed DWPSVM model and all tested 

VM models, the logistic regression (LR) model is also tested on 

our credit data sets through a similar procedure as described in 

ection 5.1 . The AUC values and the classification accuracy scores 

re recorded in Tables 14–17 . Moreover, the training and testing 

PU time of tested models is recorded in Table 18 . 
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Table 13 

World credit data. 

data set # of features name of class sample size 

Chinese Corporate Credit (CCC) 6 Good credit/Bad credit 58/48 

Customer Credit Applications (CCA) 15 Default/Non-default 296/357 

German Credit Data (GCD) 20 Creditworthy/Non-creditworthy 700/300 

Japanese Credit Data (JCD) 10 Positive/Negative a 84/40 

a “Positive” indicates the credit was granted and “negative” indicates the credit was not granted. 

Table 14 

CCC Results. 

Model AUC % accuracy score % 

t-test Based Entropy Based t-test Based Entropy Based 

mean std min max mean std min max mean std min max mean std min max 

DWPSVM 96.16 5.98 77.78 100.00 94.81 11.55 50.00 100.00 91.75 8.39 66.67 100.00 90.48 8.52 66.67 100.00 

SQSSVM 95.00 9.11 55.00 100.00 94.06 11.23 55.00 100.00 91.43 8.50 66.67 100.00 89.52 8.65 66.67 100.00 

SVM 94.31 9.85 55.00 100.00 94.44 8.19 75.00 100.00 90.95 8.52 66.67 100.00 89.52 8.65 66.67 100.00 

SVM-Gauss 95.31 8.70 60.00 100.00 93.31 10.73 55.00 100.00 90.95 8.52 66.67 100.00 89.52 8.65 66.67 100.00 

SVM-Quad 92.94 11.28 55.00 100.00 93.69 9.62 65.00 100.00 89.52 8.65 66.67 100.00 89.52 8.65 66.67 100.00 

QLSTSVM 94.94 9.72 55.00 100.00 93.56 11.24 55.00 100.00 90.48 8.73 66.67 100.00 89.68 9.14 66.67 100.00 

QLSSVM 88.94 9.56 62.50 100.00 87.06 8.79 75.00 100.00 89.37 8.76 66.67 100.00 88.41 8.76 66.67 100.00 

LR 91.75 8.97 62.50 100.00 92.38 9.09 62.50 100.00 93.02 8.06 66.67 100.00 93.02 8.06 66.67 100.00 

Table 15 

CCA Results. 

Model AUC % accuracy score % 

t-test Based Entropy Based t-test Based Entropy Based 

mean std min max mean std min max mean std min max mean std min max 

DWPSVM 93.20 3.48 77.93 99.11 93.01 4.29 84.43 99.21 86.38 3.85 78.13 93.75 86.31 3.76 78.13 92.19 

SQSSVM 92.32 3.42 80.99 98.13 92.22 4.38 81.67 98.42 86.03 3.87 78.13 92.19 86.44 3.82 78.13 92.19 

SVM 91.36 3.68 78.42 98.82 92.28 4.44 83.15 98.62 86.28 3.82 78.13 92.19 86.31 3.76 78.13 92.19 

SVM-Gauss 93.05 3.66 78.92 98.92 92.73 4.63 80.69 99.11 86.13 3.82 78.13 92.19 86.44 3.82 78.13 92.19 

SVM-Quad 92.27 3.92 76.55 98.92 92.58 4.68 81.18 99.21 86.28 3.82 78.13 92.19 86.38 3.72 78.13 92.19 

QLSTSVM 91.96 3.92 77.73 98.82 91.50 4.30 83.74 99.11 85.91 3.87 76.56 95.31 84.88 4.22 76.56 93.75 

QLSSVM 86.87 4.01 77.39 95.71 86.98 4.83 77.39 95.71 86.06 3.81 78.13 92.19 86.44 3.82 78.13 92.19 

LR 86.91 4.11 77.39 95.71 87.19 4.97 78.82 95.71 86.41 3.97 76.56 93.75 86.50 3.93 76.56 93.75 

Table 16 

GCD Results. 

Model AUC % accuracy score % 

t-test Based Entropy Based t-test Based Entropy Based 

mean std min max mean std min max mean std min max mean std min max 

DWPSVM 79.67 5.20 68.00 87.33 79.55 5.28 67.57 86.81 77.37 2.92 70.00 83.00 76.73 3.08 69.00 83.00 

SQSSVM 78.65 6.05 66.33 88.48 77.65 5.93 64.86 85.52 77.00 2.60 70.00 81.00 75.38 3.77 70.00 81.00 

SVM 79.56 5.20 67.67 87.29 79.52 5.33 67.00 86.19 76.67 3.12 66.00 83.00 77.10 3.27 66.00 83.00 

SVM-Gauss 79.61 5.11 68.05 87.05 79.41 5.45 67.29 86.90 76.77 2.60 71.00 82.00 76.73 2.80 71.00 82.00 

SVM-Quad 79.27 5.36 68.71 87.62 78.15 4.70 69.29 83.76 75.37 3.03 69.00 82.00 73.83 3.30 69.00 82.00 

QLSTSVM 72.09 6.81 57.38 85.86 72.76 6.95 58.86 89.19 73.60 3.40 63.00 79.00 74.28 2.81 68.00 80.00 

QLSSVM 68.69 5.70 59.29 79.05 67.37 5.73 57.62 77.86 77.17 2.70 70.00 81.00 77.15 2.39 73.00 80.00 

LR 69.04 5.50 60.95 80.48 68.71 5.79 58.57 78.81 77.10 3.49 67.00 84.00 77.05 3.34 70.00 84.00 

Table 17 

JAP Results. 

Model AUC % accuracy score % 

t-test Based Entropy Based t-test Based Entropy Based 

mean std min max mean std min max mean std min max mean std min max 

DWPSVM 84.33 10.48 58.33 100.00 83.94 14.74 34.38 100.00 77.86 9.71 58.33 100.00 77.78 11.25 58.33 100.00 

SQSSVM 79.31 15.23 28.13 100.00 80.63 14.05 31.25 100.00 77.14 9.27 58.33 91.67 77.78 10.39 58.33 91.67 

SVM 82.00 15.24 28.13 100.00 82.94 14.34 28.13 100.00 75.83 8.99 58.33 91.67 76.67 10.41 58.33 91.67 

SVM-Gauss 81.63 15.23 28.13 100.00 82.75 14.88 28.13 100.00 76.07 8.85 58.33 91.67 76.39 10.56 58.33 91.67 

SVM-Quad 80.81 15.01 25.00 100.00 81.19 14.42 28.13 100.00 75.24 8.51 58.33 91.67 74.72 9.00 58.33 91.67 

QLSTSVM 73.94 16.53 34.38 100.00 71.13 14.13 28.13 100.00 69.76 12.38 41.67 91.67 71.11 11.73 50.00 91.67 

QLSSVM 66.13 12.63 43.75 87.50 68.00 12.54 43.75 87.50 77.26 9.92 58.33 100.00 77.50 9.32 58.33 91.67 

LR 66.88 14.02 31.25 87.50 65.25 14.29 31.25 87.50 73.69 11.49 41.67 91.67 73.21 10.72 50.00 91.67 
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Table 18 

Credit data CPU time. 

Model training CPU time (s) testing CPU 

time (s) 

CCC CCA GCD JAP 

(6, 106) (15, 653) (20, 10 0 0) (10, 124) 

DWPSVM < 0.001 0.653 14.758 0.011 10 −4 

SQSSVM 0.079 1.998 11.361 0.161 10 −4 

SVM < 0.001 1.530 0.047 < 0.001 < 10 −5 

SVM-Gauss < 0.001 0.013 0.054 < 0.001 < 10 −5 

SVM-Quad < 0.001 0.007 0.048 0.002 < 10 −5 

QLSTSVM < 0.001 0.002 0.076 < 0.001 < 10 −5 

QLSSVM 0.152 2.557 7.857 0.359 10 −4 

LR 0.024 0.047 0.048 0.036 < 10 −5 
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Some observations and conclusions from Tables 14–18 are as 

he following: 

• Compared with the entropy based feature weighting strategy, 

the SVM models equipped with t-test based weighting strategy 

produce higher mean accuracy scores and AUC values. It indi- 

cates that the t-test based weighting might be preferred in the 

applications of credit score forecasting. 
• The proposed DWPSVM model outperforms all other tested 

models on GCD and JAP data sets. The credit score data may not 

be highly nonlinear, so the accuracy improvement of DWPSVM 

is not very obvious. Although LR produces the highest mean of 

accuracy scores on CCC and CCA, the mean of AUC values pro- 

duced by LR is much lower than that of DWPSVM. Since the 

AUC depicts a more general behavior of a chassifier, DWPSVM 

may be more preferable in classifying credit score data sets. 
• The training CPU time consumed by DWPSVM on small-sized 

credit data (e.g. CCC, JAP) is satisfying. Although it takes more 

time to implement the proposed model for larger data sets, 

such as GCD, the training CPU time of proposed model is 1–2 

orders of magnitude slower than those of other tested models. 

Moreover, the testing CPU time of DWPSVM is as short as those 

of other tested models. 

. Conclusion 

In this paper, we have derived the G-margin to propose a 

ernel-free quartic surface SVM for classifying nonlinearly sepa- 

able data by directly using the DWP surface. Certain theoretical 

roperties of DWPSVM model have been studied, and numerical 

xperiments have been conducted to investigate the effectiveness 

nd efficiency of the proposed model. The SMO algorithm has been 

dopted to implement the proposed DWPSVM model. Besides, the 

roposed model has been applied to credit scoring with some real- 

ife corporate and personal credit data sets. We summarize some 

ajor findings here. 

• In terms of classification accuracy, the proposed DWPSVM 

model performs better than other well-known SVM models. 

The separation surface produced by DWPSVM is a quartic sur- 

face, which is much more flexible than a quadratic surface. Con- 

sequently, the DWPSVM model has better capabilities to cap- 

ture the hidden high-degree nonlinearity inside the data. 
• The proposed DWPSVM model showed dominant performance 

on most of the artificial and public benchmark data sets. The 

numerical results on artificial data also indicated the increasing 

dominance of DWPSVM over other tested models as the num- 

ber of data features increases. After being applied to a real-life 

corporate data set and three benchmark personal credit data 

sets, the proposed DWPSVM showed its stable effectiveness and 

acceptable efficiency in credit scoring. This shows the potential 

of DWPSVM in handling real-life classification problems. 
13 
• Unlike other kernel based nonlinear SVM models, the proposed 

DWPSVM model does not require any kernel functions or tun- 

ing their relative parameters. It saves considerable effort in the 

training process. 

Our investigation of the proposed DWPSVM model for binary 

lassification indicates some additional research works as follows. 

irst, compared with kernel-based SVM models, the training CPU 

ime of the proposed DWPSVM model is bigger for large-sized data 

ets. In fact, the kernel-based SVM models were implemented by 

sing LIBSVM, which has been customized professionally, but the 

odes for implementing the proposed DWPSVM with SMO algo- 

ithm were written from scratch. So an immediate future work 

s to optimize and customize the codes of DWPSVM model for 

apid computation. Another interesting work is to reformulate 

DWPSVM) as an SDP problem and compare the SMO algorithm 

ith SDP solvers. Moreover, the proposed DWPSVM model can be 

xtended for other real-world applications including electric load 

orecasting ( Luo, Hong, & Fang, 2018 ) and cross-selling recommen- 

ations ( Chen et al., 2016 ). 
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ppendix A. Proofs 

1. Proof of Lemma 3.2 

roof. Given a quadratic surface S denoted by (10) , for any point 

 ∈ S, recall the definitions of ˆ n ( x ) , γ ( x ) , γ + ( x ) , γ −( x ) , x + and

 

− in Section 3.2 . By (11) , Q( x + ) = 1 and Q( x −) = −1 , which are

quivalent to 

1 

2 

( x + γ + ( x ) ̂  n ( x )) T W ( x + γ + ( x ) ̂  n ( x )) 

+ b 

T ( x + γ + ( x ) ̂  n ( x )) + c − 1 = 0 

1 

2 

( x − γ −( x ) ̂  n ( x )) T W ( x − γ −( x ) ̂  n ( x )) 

+ b 

T ( x − γ −( x ) ̂  n ( x )) + c + 1 = 0 (A.1) 

With Q( x ) = 

1 
2 x 

T W x + b T x + c = 0 , (A.1) can be simplified as

he following: 

1 
2 
γ + ( x ) 2 ˆ n ( x ) T W ̂

 n ( x ) + γ + ( x ) ̂  n ( x ) T ( W x + b ) − 1 = 0 

1 
2 
γ −( x ) 

2 
ˆ n ( x ) T W ̂

 n ( x ) − γ −( x ) ̂  n ( x ) T ( W x + b ) + 1 = 0 

(A.2) 

Notice that (A.2) are second order equations with respect to 
+ ( x ) and γ −( x ) , respectively. Therefore, we will be able to solve 

ut the explicit solutions as the following: 

+ ( x ) = 

− ˆ n ( x ) T ( W x + b ) ±
√ [

ˆ n ( x ) T ( W x + b ) 
]2 + 2 ̂

 n ( x ) T W ̂

 n ( x ) 

ˆ n ( x ) T W ̂

 n ( x ) 

−( x ) = 

ˆ n ( x ) T ( W x + b ) ±
√ [

ˆ n ( x ) T ( W x + b ) 
]2 − 2 ̂

 n ( x ) T W ̂

 n ( x ) 

ˆ n ( x ) T W ̂

 n ( x ) 

Since ˆ n ( x ) T (W x + b ) = ‖ W x + b ‖ , the above equations can be

implified as the following: 

γ + ( x ) = 

−‖ W x + b ‖±
√ ‖ W x + b ‖ 2 +2 ̂ n ( x ) T W ̂

 n ( x ) 

ˆ n ( x ) T W ̂

 n ( x ) 
, γ −( x ) 

 

‖ W x + b ‖±
√ ‖ W x + b ‖ 2 −2 ̂ n ( x ) T W ̂

 n ( x ) 

ˆ n ( x ) T W ̂

 n ( x ) 

By eliminating two useless roots, we have the explicit solutions 

f γ + ( x ) and γ −( x ) . 

https://doi.org/10.13039/100006754
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L  
+ ( x ) = 

−‖ W x + b ‖ + 

√ ‖ W x + b ‖ 

2 + 2 ̂

 n ( x ) T W ̂

 n ( x ) 

ˆ n ( x ) T W ̂

 n ( x ) 

−( x ) = 

‖ W x + b ‖ −
√ ‖ W x + b ‖ 

2 − 2 ̂

 n ( x ) T W ̂

 n ( x ) 

ˆ n ( x ) T W ̂

 n ( x ) 
(A.3) 

By (12) , there exists an orthonormal matrix U ∈ R 

n ×n such 

hat W = U �U 

T 
, where � is a diagonal matrix of the singu- 

ar values of W . Recall that the singular values of W are in a 

ecreasing order: σ1 � σ2 � · · · � σr � σr+1 = · · · = σn = 0 . Denote 

 = [ u 1 , u 2 , . . . , u n ] . Then { u i ∈ R 

n } 1 � i � n forms an orthonormal ba- 

is on R 

n . Hence, there exists α( x ) = [ α1 ( x ) , α2 ( x ) , . . . , αn ( x )] T ∈
 

n such that 

 x + b = 

n ∑ 

i =1 

αi ( x ) u i = U α( x ) . (A.4) 

aking (A.4) into (A. 3) and we have 

+ ( x ) = 

−‖ U α( x ) ‖ + 

√ 

‖ U α( x ) ‖ 

2 + 2 

α( x ) T �α( x ) 
α( x ) T α( x ) 

α( x ) T �α( x ) 
α( x ) T α( x ) 

, 

−( x ) = 

‖ U α( x ) ‖ −
√ 

‖ U α( x ) ‖ 

2 − 2 

α( x ) T �α( x ) 
α( x ) T α( x ) 

α( x ) T �α( x ) 
α( x ) T α( x ) 

Notice that α( x ) T �α( x ) 

α( x ) T α( x ) 
is the Rayleigh quotient of � at α( x ) . 

enote α( x ) T 
α( x ) 

α( x ) T α( x ) 
= R (
, α( x )) . By Parseval’s identity, ‖ U α( x ) ‖ 2 2 =

 α( x ) ‖ 2 2 . Hence, the G-margin at x can be written as 

( x ) = γ + ( x ) + γ −( x ) 

= 

√ ‖ α( x ) ‖ 

2 + 2 R (�, α( x )) −
√ ‖ α( x ) ‖ 

2 − 2 R (�, α( x )) 

R (�, α( x )) 
(A.5) 

Notice that inequality 
√ 

x − √ 

y � 

√ 

x − y holds for any x � y � 0 . 

herefore, we have inequality 

1 

γ ( x ) 
= 

1 

γ + ( x ) + γ −( x ) 
� 

√ 

R (�, α( x )) 

2 

. (A.6) 

Since � is known when S is given, we proved Lemma 3.2 . �

2. Proof of theorem 4.1 

roof. Assume ( v ∗, b ∗, q ∗, ζ∗) and ( ̂ v , ̂  b , ̂  q , ̂  ζ) are both optimal

olutions to problem ( DWPSVM”). For a convex program, its 

ptimal solution set is convex. In other words, (∀ α ∈ (0 , 1)) 

( v ∗, b ∗, q ∗, ζ∗) + (1 − α)( ̂ v , ̂  b , ̂  q , ̂  ζ) is optimal as well. Denote the

ptimal value as z̄ . 

Define function p : R 

l (l +1)+ n (n +1) 
2 

+ N → R , such that

p( v , b , ζ) � 

1 

2 

v T H v + 

1 

2 

‖ b ‖ 

2 
2 + C 

N ∑ 

i =1 

ζi . (A.7) 

hich leads to 

¯
 = 

1 

2 

(
αv ∗ + (1 − α) ̂ v 

)T 
H 

(
αv ∗ + (1 − α) ̂ v 

)
+ 

1 

2 

(
αb 

∗

+(1 − α) ̂ b 

)T (
αb 

∗ + (1 − α) ̂ b 

)
+ C 

N ∑ 

i =1 

(
αζ ∗

i + (1 − α) ̂  ζi 

)

= 

α2 

2 

(
v ∗T H v ∗ + b 

∗T 
b 

∗
)

+ 

(1 − α) 2 

2 

(
ˆ v T H ̂

 v + ̂

 b 

T 
ˆ b 

)
+ α(1 − α) 

(
v ∗T H ̂

 v + b 

∗T ˆ b 

)
+ C 

N ∑ 

i =1 

(
αζ ∗

i + (1 − α) ̂  ζi 

)

14 
= αp( v ∗, b 

∗
, ζ∗) + (1 − α) p( ̂ v , ̂  b , ̂  ζ) + α(α − 1) 

×
((

v ∗ − ˆ v 
)T 

H 

(
v ∗ − ˆ v 

)
+ ( b 

∗ − ˆ b ) T ( b 

∗ − ˆ b ) 
)
. 

Since z̄ = p( v ∗, b ∗, ζ∗) = p( ̂ v , n ̂

 b , ̂  ζ) forces 
(
v ∗ − ˆ v 

)T 
H 

(
v ∗ − ˆ v 

)
+

 b ∗ − ˆ b ) T ( b ∗ − ˆ b ) = 0 , which implies 
(
v ∗ − ˆ v 

)T 
H 

(
v ∗ − ˆ v 

)
= 0 due to 

he positive definiteness of H and ( b ∗ − ˆ b ) T ( b ∗ − ˆ b ) = 0 . 

In conclusion, v ∗ = 

ˆ v and b ∗ = 

ˆ b . �

ppendix B. Auxiliary Information 

All the benchmark data sets come from three sources: UCI ma- 

hine learning repository ( Dua & Graff, 2017 ), Kaggle, and Hsu, 

hang, Lin et al. (2003) . For the credit data sets, the CCC data is

ollected from a Chinese credit reporting agency. The CCA data 

as used in Quinlan (1987) . The GCD and JAP data sets are col- 

ected from UCI machine learning repository ( Dua & Graff, 2017 ). 

lease find the auxiliary data information at at https://github.com/ 

orgeous1992/DWPbinary . 

Besides, the median of optimal parameters of all tested models 

n benchmark data sets are recorded in the link above. 
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