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a b s t r a c t

Electric load forecasting is a crucial part of business operations in the energy industry.
Various load forecasting methods and techniques have been proposed and tested. With
growing concerns about cybersecurity and malicious data manipulations, an emerging
topic is to develop robust load forecasting models. In this paper, we propose a ro-
bust support vector regression (SVR) model to forecast the electricity demand under
data integrity attacks. We first introduce a weight function to calculate the relative
importance of each observation in the load history. We then construct a weighted
quadratic surface SVR model. Some theoretical properties of the proposed model are
derived. Extensive computational experiments are based on the publicly available data
from Global Energy Forecasting Competition 2012 and ISO New England. To imitate data
integrity attacks, we have deliberately increased or decreased the historical load data.
Finally, the computational results demonstrate better accuracy of the proposed robust
model over other recently proposed robust models in the load forecasting literature.
© 2022 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
1. Introduction

Load forecasts are widely used across all segments of
he power industry. Accurate load forecasts are crucial to
he excellence of power system operations and planning,
uch as unit commitment, energy transfer scheduling,
nd load-frequency control (Hahn et al., 2009). In re-
ent years, the information technologies such as Internet,
ommunication networks, and computers have made the
perations of power grids much more efficient than ever
efore. These technologies, however, have also enabled
yberattacks on power systems. Cybersecurity currently
resents a serious challenge to the resilience of the power
rid (Ericsson, 2010). The cyber attack on Ukraine’s power
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grid (Perez, 2016), for instance, was a real threat to peo-
ple’s daily lives. Several other cyber attacks on power
systems were discussed in (Hong & Hofmann, 2021). Data
integrity attack is one form of cyber attacks. Hackers may
access the supposedly protected data sets and inject mis-
leading information to the grid measurements in a way
such that the manipulations may not be easily detected
by conventional operational practices. To prepare for data
integrity attacks against load forecasting systems, it is
imperative to develop robust load forecasting models.

Power companies count on accurate load forecasts to
operate in a safe manner, to optimize operational costs,
and to improve the reliability of distributional networks.
In electricity markets, accurate load forecasts are also
critical to support energy trading. While accurate load
forecasts rely on the accurate historical information, data
integrity attacks may contaminate the historical data as
regression model for electric load forecasting. International Journal of

follows. Hackers may deliberately increase the historical
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oad values to lead to over-forecasts of electricity demand.
onsequently, the unnecessary expenses on power gener-
tion, infrastructure maintenance and upgrade, and short
ell of over-bought electricity reduce the overall eco-
omic efficiency. Hackers may also decrease the historical
oad values to result in under-forecasts. Consequently, the
nsufficient capacity expansion in the generation, trans-
ission, and distribution systems may occur, which may

ead to worse reliability indices and increase the risk for
rownouts or even blackouts.
A rich literature on load forecasting has been devel-

ped during the past few decades (Hong & Fan, 2016;
eron, 2006). Most of the published studies focus on de-

eloping and implementing various load forecasting mod-
ls, such as multiple linear regression (MLR) (Charlton &
ingleton, 2014; Hong, Wilson, & Xie, 2014), artificial neu-
al networks (ANN) (Hippert et al., 2001), support vector
egression (SVR) (Chen et al., 2004), and fuzzy interaction
egression (FIR) (Hong & Wang, 2014). The two Global
nergy Forecasting Competitions, namely, GEFCom2012
nd GEFCom2014 have also stimulated many novel ideas
o tackle emerging problems such as hierarchical load
orecasting and probabilistic load forecasting (Hong & Fan,
016; Hong, Wilson, & Xie, 2014).
Several winners from the aforementioned competi-

ions conducted the procedures of outlier detection and
ata cleansing before performing load forecasting (Charl-
on & Singleton, 2014; Xie & Hong, 2016). Some other
apers touched on the anomaly detection with varying
egrees of emphasis (Akouemo & Povinelli, 2016; Luo,
ong, & Fang, 2018; Yue et al., 2019). While most of the
xisting studies focused on small-scale random outliers or
nomalies, how data integrity attacks may affect electric
oad forecasting has not been seriously investigated. As
he first of its kind, the empirical study in Luo, Hong,
nd Yue (2018) benchmarked the robustness of four rep-
esentative load forecasting models (i.e, MLR, ANN, SVR,
nd FIR). It clearly demonstrated that the performance of
ll four models w.r.t. forecast accuracy deteriorates dra-
atically as the level of malicious data integrity attacks

ncreases.
Under data integrity attacks, a large portion of his-

orical load data could be maliciously altered with large
agnitudes by hackers, resulting in many observations
eviating markedly from the normal levels. Consequently,
he anomalies tend to greatly impact the commonly used
east square estimators. To alleviate the impacts of
nomalies from data attacks, the iteratively re-weighted
east squares (IRLS) and L1 regression are introduced in
uo et al. (2019) to reduce the impact of large residuals.
lthough the robust regression models in Luo et al. (2019)
ere more robust than the ones in Luo, Hong, and Fang
2018), none of them can generate accurate forecasts
nder large-scale data attacks, especially when the attack
ffects greater than 40% of the data.
The SVR model was used by the winning team in

UNITE Competition 2001 (Chen et al., 2004), but the
rogress of adopting SVR models to load forecasting
lowed down after that. In Luo, Hong, and Yue (2018),
he SVR model was shown to be more robust than the
LR, ANN, and FIR models. A possible reason is that the
 S
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regression curve obtained by the SVR model is determined
mainly by the underlying support vectors and thus less
affected by the outliers and noise. To capture the non-
linear relationship between the load and its explanatory
variables, nonlinear kernel functions are often adopted in
SVR models for electric load forecasting (Ceperic et al.,
2013; Hahn et al., 2009). A kernel function maps all data
points from the original space to a higher dimensional
feature space, where a hyperplane is generated to fit the
mapped points. However, there is no universal rule to
automatically choose a proper kernel function for a given
data set. For electric load forecasting, the performance of
SVR models relies heavily on the parameters selected for
the kernel function. It may take a significant amount of
computational time and effort to select a proper kernel
function and its parameters. Moreover, the numerical
issues related to the inverse of kernel matrices based on
the large data sets used for load forecasting may substan-
tially influence the forecast accuracy and computational
efforts of the SVR model with a kernel, especially when
the kernel matrix is singular. Hence, the employment of
kernel function greatly limits the efficiency and accuracy
of SVR models for electric load forecasting. In theory, any
twice continuously differentiable nonlinear function has a
Taylor approximation in quadratic form. Furthermore, the
vanilla benchmark model in GEFCom2012 (Hong, Wilson,
& Xie, 2014) includes the interactions between variables,
of which some are also in the quadratic form. Therefore,
we intend to propose a kernel-free quadratic surface
SVR (QSSVR) by directly using a quadratic surface for an
effective and efficient load forecasting in this paper.

The key feature of this paper is to propose a robust
kernel-free weighted quadratic surface SVR (WQSSVR)
model for load forecasting under data integrity attacks.
The kernel-free QSSVR model directly utilizes a quadratic
surface to fit the data points. We design a weight function
to evaluate the relative importance of each data point in
the load history to reduce the influence of manipulated
observations. To imitate the data integrity attacks target-
ing economic losses or system blackouts of modern power
grids, we conduct computational experiments in which
the majority part of historical load data is deliberately
decreased or increased following different normal or uni-
form distributions. Finally, the proposed WQSSVR model
demonstrates superior accuracy compared to robust re-
gression models (IRLS and L1 regression) proposed in Luo
t al. (2019) and two other competing models (i.e., MLR
nd SVR with Gaussian kernel) in the benchmark study of
uo, Hong, and Fang (2018).
The rest of the paper is arranged as follows:

ection 2 briefly reviews some related SVR models for
lectric load forecasting, Section 3 proposes a robust
ernel-free WQSSVR model for load forecasting, Section 4
onducts the computational experiments on electric load
orecasting under various types of data attacks to compare
he accuracy of the proposed model with its counterparts,
ection 5 shows some additional numerical tests of the
roposed model on a total of 30 data sets in differ-
nt zones, for the discussion of robustness, and finally

ection 6 concludes this paper.
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. Support vector regression models for electric load
orecasting

Based on finding of the generalized portrait of pat-
erns, the support vector (SV) algorithm (previously called
he generalized portrait algorithm) was first developed
n Russia (Vapnik, 1982; Vapnik & Lerner, 1963). In its
urrent form, the support vector machine (SVM) was
argely developed and extensively applied at AT&T Bell
aboratories by Vapnik and co-workers (Cortes & Vapnik,
995; Vapnik, 1995). To overcome the drawbacks induced
y employing kernels, a kernel-free quadratic surface
VM (QSSVM) model was proposed to directly utilize one
uadratic surface for an effective nonlinear classification
n Luo et al. (2016). Based on the QSSVM model, a semi-
upervised QSSVM model with fuzzy set (Tian et al., 2017)
nd an unsupervised QSSVM model (Luo et al., 2020) have
een developed for effective mislabeled classification and
nsupervised classification, respectively. As a counterpart
f the SVM model for regression problems, the SVR model
as attained an excellent performance in solving many
eal-world forecasting problems, such as forecasting the
lectric loads (Chen et al., 2004) and loss given defaults
Yao et al., 2015). Electric load forecasting is particularly
mportant in the power industry. The first notable success
f the SVR model for electric load forecasting was shown
t the EUNITE competition 2001 (Chen et al., 2004).
In Chen et al. (2004), a training data set

{(
(xi)T , yi

)T
,

i = 1, . . . , n
}

is obtained, where the input xi =
(
xi1, x

i
2,

. . . , xim
)T

∈ Rm includes the calendar attributes, the tem-
perature attribute, and their interactions, and the output
yi ∈ R denotes the load value of the ith day. Given this
training data set, the classic SVR model aims to find the
parameters w ∈ Rm and c ∈ R of a fitting hyperplane
y = wT x + c , so that wT xi + c is close to yi for each
training point. SVR assumes that the deviation tolerance
between wT x + c and y is at most δ, which indicates
that the loss is calculated when

⏐⏐wT x + c − y
⏐⏐ > δ. In

other words, if the training point falls within the tube
|y − (wT x + c)| ≤ δ, which is called the insensitive tube
(Chen et al., 2004), the training point is considered to
be accurately predicted. Hence, the classic SVR model is
formulated in the following manner (Chen et al., 2004):

min
w,c,ξ

1
2
wTw + Cp

n∑
i=1

ξi

s.t. δ + ξi ≥ yi − (wT xi + c), i = 1, 2, . . . , n,

yi − (wT xi + c) ≥ −δ − ξi, i = 1, 2, . . . , n,

ξi ≥ 0, i = 1, 2, . . . , n.

(1)

where ξi, i = 1, 2, . . . , n are the errors of training points
outside the insensitive tube, ξ ≜ (ξ1, ξ2, . . . , ξn)T for
convenience in this paper, δ, Cp > 0 are the given param-
eters. Similar to the derivation of margin between the two
classes in SVM (Cortes & Vapnik, 1995; Vapnik, 1995), the
vertical distance between the hyperplanes y−(wT x+c) =

δ and y − (wT x + c) = −δ can be calculated as δ

wTw+1
.

Minimizing 1
2w

Tw(the same as the first term in the ob-
jective of SVM) and the constraints in the model imply
 2

3

that as many training points are put in the insensitive
tube as possible (Chen et al., 2004). If the point is not in
the tube, there is a related error ξi to be minimized in
the objective of the SVR model. From another perspective,
minimizing 1

2w
Tw indicates the number of zero element

in w ∈ Rm is maximized so that the complexity of
fitting hyperplane y = wT x + c is minimized (Ceperic
et al., 2013). Hence, the SVR model fits the training data
by minimizing both the sum of errors of training points∑n

i=1 ξi and the regularization term 1
2w

Tw (Ceperic et al.,
2013; Chen et al., 2004).

For nonlinear fitting, all training points are first
mapped to a higher dimensional space by a nonlinear
kernel function, where a hyperplane is found to fit the
mapped points, similar to the idea in the classic SVR.
Below is the SVR model with a commonly used Gaussian
kernel (denoted as ‘‘SVR_Gau’’ in this paper) (Chen et al.,
2004):

min
w,c,ξ

1
2
wTw + Cp

n∑
i=1

ξi

s.t. δ + ξi ≥ yi − (wTφ(xi) + c), i = 1, 2, . . . , n,

yi − (wTφ(xi) + c) ≥ −δ − ξi, i = 1, 2, . . . , n,

ξi ≥ 0, i = 1, 2, . . . , n.

(2)

Here, δ, Cp > 0 are the given parameters and φ : Rm
→

Rd(where d > m) is the Gaussian kernel function. These
SVR models won the competition in 2001 organized by
the EUNITE network (Chen et al., 2004). Since then, SVR
has evolved to some variants and emerged as a relatively
new technique for load forecasting (Ghelardoni et al.,
2013).

3. A weighted quadratic surface SVR model

In this section, we first introduce the underlying vari-
ables for electric load forecasting. We then introduce a
kernel-free QSSVR model by directly utilizing a quadratic
surface for regression. By incorporating the weights of
training points, we propose a kernel-free WQSSVR model.
Finally, some theoretical properties of the proposed
WQSSVR model are derived.

3.1. The vanilla model

Thousands of models have been published in the load
forecasting literature (Hong, 2010). As a frequently cited
model, the following vanilla model is utilized in GEF-
Com2012 (Hong, Wilson, & Xie, 2014) to benchmark the
load forecast accuracy:

E(yl) = r0 + r1xtr + r2xh + r3xw + r4xm + r5xt + r6(xt)2

+ r7(xt)3 + r8xh∗xw + r9xt∗xh + r10(xt)2∗xh
+ r11(xt)3∗xh + r12xt∗xm + r13(xt)2∗xm + r14(xt)3∗xm,

(3)

here yl is a variable of electric loads; xtr is a variable
f the increasing integers representing a linear trend; xh
s a vector including 24 dummy variables representing

4 h in a day; xw is a vector including 7 dummy variables
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epresenting 7 days in a week; xm is a vector including 12
ummy variables representing 12 months in a year; and
t is a variable representing the coincident temperature.
ence, this vanilla model has totally 289 variables, which
orks effectively for electric load forecasting, (Hong &
an, 2016; Hong, Pinson, & Fan, 2014; Hong, Wilson, & Xie,
014). In this paper, we intend to utilize these variables
n the vanilla model as the underlying variables for the
roposed WQSSVR model.

.2. Quadratic surface SVR model

To reach a high accuracy using SVR with a kernel,
orecasters may have to invest a significant amount of
omputational time and effort to select a proper kernel
unction and its kernel parameters. When the kernel
atrix is singular, the inverse of kernel matrices based
n the load forecasting data, which are typically large,
an heavily influence the forecast accuracy and compu-
ational efforts of the SVR with a kernel. To save com-
utational time and improve the classification accuracy,
he kernel-free SVM models proposed in Luo et al. (2016),
ian et al. (2017) and Luo et al. (2020) directly use the
uadratic surfaces for classification without using any
ernel. Similarly, for nonlinear fitting of training data set(
(xi)T , yi

)T
, i = 1, . . . , n

}
, where xi =

(
xi1, x

i
2, . . . , x

i
m

)T
∈

m and yi ∈ R, we introduce the QSSVR model to find the
arameters (W , b, c) of a quadratic surface

= q(x) ≜
1
2
xTWx + bT x + c,

= W T
=

⎡⎢⎢⎢⎢⎣
w11 w12 · · · w1m

w12 w22 · · · w2m
...

...
...

...

w1m w2m · · · wmm

⎤⎥⎥⎥⎥⎦ ∈ Rm×m,

b =

⎡⎢⎢⎢⎢⎣
b1

b2
...

bm

⎤⎥⎥⎥⎥⎦ ∈ Rm, c ∈ R,

which fits the n training points without utilizing any
kernel function. And let wij = 0, i ̸= j for high efficiency
n large hourly load data with 289 independent variables.
Analogous to the classic SVR models, the goal of QSSVR

odel is to generate one ‘‘tube’’ and then try to include
s many training points as possible in this ‘‘tube’’. More
pecifically, we first ignore the errors of the training
oints inside the tube |y − (0.5xTWx + bT x + c)| ≤ δ

or a given δ. To include many training points in this
ube, we try to maximize the margin between the upper
nd the lower bounds of the tube. This objective can
e characterized by maximizing the relative geometrical
argin at each training point. In Appendix A, the relative
eometrical margin at point ((xi)T , yi)T is defined and ap-

proximated as δ

∥(Wxi+b,−1)∥2
. Hence, one objective of QSSVR

can be formulated as minimizing
∑n

∥(Wxi+b, −1)∥2
=
i=1 2

4

∑n
i=1 ∥Wxi + b∥2

2 + n, which is equivalent to minimizing∑n
i=1 ∥Wxi + b∥2

2. This term in the objective can also be
regarded as one regularization term to avoid over-fitting,
which is similar to the first regularization term in the
QSSVM (Luo et al., 2016) to maximize the margin between
two classes. Another objective of QSSVR is to minimize
the deviations of training points with errors larger than δ.
Thus, the QSSVR model can be formulated as

min
W ,b,c,ξ

n∑
i=1

∥Wxi + b∥2
2 + Cp

n∑
i=1

ξi

s.t. δ + ξi ≥ yi − (
1
2
(xi)TWxi + bT xi + c), i = 1, 2, . . . , n,

yi − (
1
2
(xi)TWxi + bT xi + c) ≥ −δ − ξi, i = 1, 2, . . . , n,

ξi ≥ 0, i = 1, 2, . . . , n.

(4)

where δ, Cp > 0 are the given parameters and the con-
stant Cp > 0 determines the trade-off between the rela-
tive geometrical margins and the amount up to which the
deviations larger than δ are tolerated.

3.3. Weighted quadratic surface SVR model

When a load forecasting system is under data integrity
attacks, the training data may be contaminated. Conse-
quently, the QSSVR model may suffer the loss of forecast
accuracy, because the model assumes that every train-
ing point makes the same contribution to parameter es-
timation. To properly address these issues, we design
the following weight function to efficiently calculate the
weights of all training points

{(
(xi)T , yi

)T
, i = 1, . . . , n

}
for characterizing their relative contributions:

βi = e−|ui|, i = 1, 2, . . . , n

where ui = |γi − γ | /MED, γi ≜
⏐⏐yi − ŷi

⏐⏐ (ŷi = wT xi + c ,
here w and c are generated by using the training points
nd L1 regression Luo et al., 2019), γ is the median of

γi, i = 1, 2, . . . , n, MED is the median of |γi − γ | , i =

1, 2, . . . , n. The weight βi ∈ [0, 1] is calculated by using
the exponential function, which is similar to Welsch func-
tion in the robust M-estimates (Basu & Paliwal, 1989). The
weight of the point with smaller |ui| is larger than that of
the point with larger |ui|. As |ui| increases from 0 to in-
finity, βi first decreases quickly from 1 and then decreases
slowly to 0. Hence, if a training point is manipulated, then
|ui| of this point becomes large and the weight for this
point is near 0. The weakness of this weight function is
that the weights for some points without attacks (which
leads to small |ui|) may not be large since βi decreases
quickly from 1 at the first stage of increasing |ui|.

To reduce the contributions of attacked points, we
propose a WQSSVR model by incorporating the calcu-
lated weights β , i = 1, . . . , n into the two terms of the
i
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bjective function of QSSVR as the following:

min
,b,c,ξ

n∑
i=1

βi∥Wxi + b∥2
2 + Cp

n∑
i=1

βiξi

s.t. δ + ξi ≥ yi − (
1
2
(xi)TWxi + bT xi + c), i = 1, 2, . . . , n,

yi − (
1
2
(xi)TWxi + bT xi + c) ≥ −δ − ξi, i = 1, 2, . . . , n,

ξi ≥ 0, i = 1, 2, . . . , n.

(5)

here δ, Cp > 0 are the given parameters. Similarly, the
erms βiξi and βi

Wxi + b
2
2 can be deemed as measuring

he error ξi and
Wxi + b

2
2(i.e., the relative geometrical

argin of point) with the weight βi, respectively. If the
oint xi is more likely to be an attacked point, which in-
icates that xi is less important, the related βi is expected
o be small to reduce the effect of ξi and

Wxi + b
2
2

n the WQSSVR model. Hence, the main advantage of
ntroducing the weights into the QSSVR model is to re-
uce the contributions of attacked points to minimize
he errors and maximize the relative geometrical mar-
ins of training points. Moreover, in the objective of the
roposed WQSSVR model, minimizing the regularization
erm

∑n
i=1 βi∥Wxi + b∥2

2 and the term of errors
∑n

i=1 βiξi
help avoid over-fitting and under-fitting the training data,
respectively.

Since W is a diagonal matrix, the WQSSVR model (5)
can be equivalently reformulated for one smaller-sized
WQSSVR’ optimization model by reducing the matrix vari-
able W to a smaller-sized vector variable, similar to the
reformulations in Dagher (2008) and Luo et al. (2016) as
the following:

min
z,c,ξ

zTGz + Cp

n∑
i=1

βiξi

s.t. δ + ξi ≥ yi − (sTi z + c) ≥ −δ−ξi, i = 1, 2, . . . , n,

ξi ≥ 0, i = 1, 2, . . . , n.

(6)

where δ, Cp > 0 are the given parameters. This is derived
n detail in Appendix B with the definitions of z, si, and G.

.4. Theoretical properties of WQSSVR

For any formulated model in the form of an opti-
ization problem, it is possible that there is no feasible
olution. In this subsection, we investigate the existence
f optimal solution to the proposed WQSSVR′ model (6)
s follows, which is similar to proving the theoretical
roperties of soft QSSVM model in Luo et al. (2016).

heorem 1. For any given training data set ((xi)T , yi)T , i =

1, . . . , n and Cp > 0, there exists an optimal solution to the
WQSSVR′ model with a finite objective value.

Proof. Take any (̃zT , c̃)T and let ξ̃i ≜ max 0, |yi−(sTi z̃+̃c)|−
δ, i = 1, . . . , n. Then, ξ̃i ≥ 0. Moreover, for i = 1, . . . , n,
ξi = 0 if |yi − (sTi z̃ + c̃)|−δ ≤ 0, and ξ̃i = |yi − (sTi z̃ + c̃)|−
δ if |yi − (sTi z̃ + c̃)|−δ > 0. Hence, |yi − (sTi z̃ + c̃)|−δ ≤ ξ̃i
and ξ̃ ≥ 0, which infers that (̃zT , c̃, ξ̃ T )T is one feasible
i z

5

solution of the WQSSVR′ model. Notice that the objective
function is continuous and the feasible domain is a closed
convex set defined by linear inequalities. Moreover, for
any z and ξi ≥ 0, i = 1, . . . , n, zTGz + Cp

∑n
i=1 βiξi =∑n

i=1(βi ∥Hiz∥2
2 + Cpβiξi) ≥ 0 (where Hi is defined in

Appendix B), which indicates that the objective value is
bounded below by 0 over the feasible domain. Therefore,
there exists an optimal solution to WQSSVR′ model with
a finite objective value.

Let F∗ ≜ (zT , c, ξ T )T ∈ R
2m

× R1
× Rn

|(zT , c, ξ T )T
is an optimal solution to the WQSSVR′ model}, then F∗

is a set including all optimal solutions to the WQSSVR′

model. Similar to proving the theoretical properties of soft
QSSVM model in Luo et al. (2016), we can verify that
the optimal solution of WQSSVR′ model is unique with
respect to the variable z if G is positive definite. Moreover,
if G is positive definite, there exist constants c

_
and c such

that c
_

≤ c ≤ c , for any (zT , c, ξ T )T ∈ F∗. Therefore,
for any given training data set, if G is positive definite,
the main shape of the fitting quadratic surface is uniquely
determined by the optimal solution of WQSSVR′ model.

Notice that if the matrix G in WQSSVR’ model is only
positive semi-definite, we can always append a pertur-
bation such that the matrix G + εI (ε > 0, I is the
identity matrix) becomes positive definite. Then, consider
the following perturbed WQSSVR-eps model:

min
z,c,ξ

zT (G + εI)z + Cp

n∑
i=1

βiξi

s.t. δ + ξi ≥ yi − (sTi z + c) ≥ −δ−ξi, i = 1, 2, . . . , n,

ξi ≥ 0, i = 1, 2, . . . , n.

(7)

where δ, Cp > 0 are the given parameters. Similar to the
roof of Theorem 1, the WQSSVR-eps model has at least
ne optimal solution with a finite optimal value since the
onstraints of WQSSVR′ model are the same as those of
QSSVR-eps model. Let ((zε)T , cε, (ξ ε)T )T be an optimal

olution of WQSSVR-eps model, then ((zε)T , cε, (ξ ε)T )T
s feasible to the WQSSVR′ model. Moreover, similar to
roving the properties of soft QSSVM model in Luo et al.
2016), the WQSSVR′ model and its perturbed WQSSVR-
ps model can be related by the next Lemma 2 and
heorem 3.

emma 2. For any given training data set ((xi)T , yi)T , i =

1, . . . , n and Cp > 0, if the optimal value of WQSSVR′ model
is v and the optimal value of WQSSVR-eps model is vε , for
given ε > 0, then vε → v as ε → 0.

Proof. Let (̃zT , c̃, ξ̃ T )T ∈ F∗. Then we prove this lemma by
considering two separate cases as follows.

Case 1: If ∥̃z∥ ̸= 0, for ((zε)T , cε, (ξ ε)T )T and any η > 0,
there exists ε0 ≜ η

(̃zT )(̃z)
such that when 0 < ε < ε0,

≤ (zε)TGzε
+ Cp

∑n
i=1 βiξ

ε
i ≤ (zε)TGzε

+ Cp
∑n

i=1 βiξ
ε
i +

(zε)T zε
= vε since ((zε)T , cε, (ξ ε)T )T is optimal to the

WQSSVR-eps model and feasible to the WQSSVR′ model,
vε ≤ z̃T (G+εI )̃z+Cp

∑n
i=1 βĩξi since (̃zT , c̃, ξ̃ T )T is feasible

to the WQSSVR-eps model, z̃T (G + εI )̃z + Cp
∑n

i=1 βĩξi =
T ˜ ∑n ˜ ˜ T ˜ ˜ T ˜
Gz + Cp i=1 βiξi + ε(z) (z) = v + ε(z) (z) < v +
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0 (̃z)T (̃z) = v + ηdue to (̃zT , c̃, ξ̃ T )T ∈ F∗. Hence, these
erivations infer that |vε − v| < η.
Case 2: If ∥̃z∥ = 0, similar to that in Case 1, we have
≤ (zε)TGzε

+ Cp
∑n

i=1 βiξ
ε
i ≤ vε ≤ z̃T (G + εI )̃z +

Cp
∑n

i−1 βĩξi = v + ε(̃z)T (̃z) = v, which infers that v = vε .
Therefore, vε → v as ε → 0. □

Remark. For any given Cp > 0 and 0 < ε1 < ε2,
let ((zε1 )T , cε1 , (ξ ε1 )T )T and vε1 be the optimal solution
and optimal value of the following WQSSVR-eps1 model,
respectively:

min
z,c,ξ

zT (G + ε1I)z + Cp

n∑
i=1

βiξi

s.t. δ + ξi ≥ yi − (sTi z + c) ≥ −δ−ξi, i = 1, 2, . . . , n,

ξi ≥ 0, i = 1, 2, . . . , n.

Moreover, let ((zε2 )T , cε2 , (ξ ε2 )T )T and vε2 be the opti-
mal solution and optimal value of the following WQSSVR-
eps2 model, respectively:

min
z,c,ξ

zT (G + ε2I)z + Cp

n∑
i=1

βiξi

s.t. δ + ξi ≥ yi − (sTi z + c) ≥ −δ−ξi, i = 1, 2, . . . , n,

ξi ≥ 0, i = 1, 2, . . . , n.

and the WQSSVR-eps1 and WQSSVR-eps2 models have
the same constraints. Then we have vε1 ≤ (zε2 )TGzε2 +

ε1(zε2 )T (zε2 )+Cp
∑n

i=1 βiξ
ε2
i < (zε2 )TGzε2 +ε2(zε2 )T (zε2 )+

p
∑n

i=1 βiξ
ε2
i = vε2 . Therefore, the sequence {vε} mono-

onically decreases to v as ε → 0.

heorem 3. For any given training data set ((xi)T , yi)T , i =

1, . . . , n and Cp > 0, if the sequence
{
((zε)T , cε, (ξ ε)T )T

}
converges to ((z0)T , c0, (ξ 0)T )T as ε → 0, then ((z0)T , c0,
(ξ 0)T )T ∈ F∗ and (z0)T z0 ≤ zT z, for any (zT , c, ξ T )T ∈ F∗.

Proof. While
{
((zε)T , cε, (ξ ε)T )T

}
→ ((z0)T , c0, (ξ 0)T )T as

ε → 0, ((z0)T , c0, (ξ 0)T )T is feasible to the WQSSVR′

model since the constraints of WQSSVR′ model are the
same as those of WQSSVR-eps model. By Lemma 2, vε →

v as ε → 0. Then we have ((z0)T , c0, (ξ 0)T )T ∈ F∗. For
any ε > 0 and any (zT , c, ξ T )T ∈ F∗, it should be noted
that (zT , c, ξ T )T is feasible to the WQSSVR-eps model and
((zε)T , cε, (ξ ε)T )T is optimal to the WQSSVR-eps model.
Hence, we have (zε)T (G+εI)zε

+Cp
∑n

i=1 βiξ
ε
i = (zε)TGzε

+

ε(zε)T zε
+ Cp

∑n
i=1 βiξ

ε
i ≤ zT (G + εI)z + Cp

∑n
i=1 βiξi=

zTGz + εzT z + Cp
∑n

i=1 βiξi.
Since (zT , c, ξ T )T ∈ F∗, we have zTGz + Cp

∑n
i=1 βiξi ≤

(zε)TGzε
+ Cp

∑n
i=1 βiξ

ε
i . Consequently, (zε)TGzε

+

ε(zε)T zε
+ Cp

∑n
i=1 βiξ

ε
i ≤ zTGz + εzT z + Cp

∑n
i=1 βiξi ≤

(zε)TGzε
+Cp

∑n
i=1 βiξ

ε
i +εzT z, which infers that (zε)T zε

≤

zT z for any ε > 0. Hence, as ε → 0, (z0)T z0 ≤ (z)T z for
any (zT , c, ξ T )T ∈ F∗ □

For any training data set, G is positive semi-definite,
and G can be set as positive definite in order to derive
some good properties of the WQSSVR′ model. If G is not
positive definite by default, we can always replace G by
the positive definite matrix G+ εI (ε > 0, I is the identity
6

matrix). Then, by Theorem 3, the perturbed WQSSVR-
eps model (7) with a sufficiently small ε > 0 can be
solved to generate a fitting quadratic surface, which is
an optimal solution of the WQSSVR′ model. Therefore,
G is considered as positive definite when deriving the
following properties of the WQSSVR′ model.

We can formulate the dual problem of the WQSSVR’
model as follows. First, the Lagrangian function is writ-
ten as below by introducing three groups of dual vari-
ables α ≜ (α1, α2, . . . , αn)T , α̂ ≜ (α̂1, α̂2, . . . , α̂n)T , µ ≜
(µ1, µ2, . . . , µn)T :

L
(
z, c, ξ , α, α̂, µ

)
= zTGz + Cp

n∑
i=1

βiξi +

n∑
i=1

αi
(
sTi z + c − yi − δ − ξi

)
+

n∑
i=1

α̂i
(
yi − sTi z − c − δ − ξi

)
−

n∑
i=1

µiξi (8)

the first-order partial derivative of Lagrangian function be
0, the following formulas can be obtained:
∂L
∂z

= 0 ⇒ z =
1
2

n∑
i=1

(
α̂i − αi

)
G−1si,

∂L
∂c

= 0 ⇒

n∑
i=1

(
α̂i − αi

)
= 0,

∂L
∂ξ

= 0 ⇒ Cpβi = α̂i + αi + µ.

Finally, to replace the primal variables (zT , c, ξ T )T with
the dual variables (αT , α̂T )T , we replace the corresponding
variables in the formula (8) with the above formulas
to formulate the Lagrangian dual problem of WQSSVR’
model as the following D-WQSSVR’ model:

max
α,α̂

n∑
i=1

[(
α̂i − αi

)
yi − δ

(
α̂i + αi

)]
−

1
4

(
n∑

i=1

(
α̂i − αi

)
si

)T

G−1

(
n∑

i=1

(
α̂i − αi

)
si

)

s.t.
n∑

i=1

(
α̂i − αi

)
= 0,

0 ≤ αi + α̂i ≤ Cpβi.

(9)

Notice that the WQSSVR′ model is a linearly con-
strained quadratic minimization problem (Boyd & Van-
denberghe, 2004). And the matrix G in the objective
of WQSSVR′ model is positive semi-definite so that the
objective function is convex. The constraint functions are
linear. A quadratic minimization problem with a con-
vex objective function and linear constraint functions
is a linearly constrained convex quadratic programming
problem. Moreover, the dual of a convex quadratic pro-
gramming problem is convex (Boyd & Vandenberghe,
2004). Then both of WQSSVR’ and D-WQSSVR’ models
are convex linearly constrained quadratic programming
problems. And there is no duality gap between WQSSVR’
model (8) and D-WQSSVR’ model (9) by the strong duality
theory (Boyd & Vandenberghe, 2004). Hence, the optimal

conditions for these convex models are the following KKT
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onditions:

i(sTi z + c − yi − δ − ξi) = 0,

ˆ i(yi − sTi z − c − δ − ξi) = 0,

Cpβi − αi − α̂i
)
ξi = 0,

i · α̂i = 0.

(10)

From these KKT optimal conditions, the optimal solu-
ions ((z∗)T , c∗, (ξ ∗)T )T and

(
α∗

i , α̂
∗

i , i = 1, . . . , n
)

of
QSSVR’ and D-WQSSVR’ models can be obtained, re-

pectively. For each training point, −δ−ξi ≤ yi−sTi z−c ≤

δ + ξi and only one of the two inequalities can be the
equality since δ > 0 and ξi ≥ 0. Hence, from the KKT
conditions (10), at least one of αi and α̂i would be 0 for
each training points, and αi = α̂i = 0 for each point falling
within the tube since −δ − ξi < yi − sTi z − c < δ + ξi.
Moreover, from KKT conditions (10), the following result
can be obtained to find the primal optimal solution z∗

from the dual optimal solution
(
α∗

i , α̂
∗

i , i = 1, . . . , n
)
,by

Lagrangian duality theory (Boyd & Vandenberghe, 2004):

z∗
=

1
2

n∑
i=1

(
α̂∗

i − α∗

i

)
G−1si (11)

Hence, from the optimal conditions (10) and formula
(11), only the training points falling outside the tube
(i.e., either α∗

i or α̂∗

i would be non-zero) contribute to the
shape of fitting quadratic surface (i.e., given by z∗) so that
these points are called the support vectors. Moreover, by
utilizing any support vector (e.g., the jth training point),
the intercept parameter can be calculated as the following
Eq. (12):

c∗
= yj + δ −

1
2

n∑
i=1

(
α̂∗

i − α∗

i

)
G−1sTi sj (12)

Therefore, from formulas (11) and (12), the optimal
olution of WQSSVR′ model is the expansion of support
ectors. Then the fitting quadratic surface obtained by
he WQSSVR model is determined mainly by the support
ectors. Notice that this WQSSVR model can be solved
fficiently by a primal–dual interior-point method, which
as a simple structure, excellent theoretical properties,
nd good practical performance for convex quadratic pro-
ramming (Vanderbei, 1999; Wright, 1997).

. Experiments and results

The experiments in this section are based on data
rom GEFCom2012 (Hong, Wilson, & Xie, 2014). We first
resent the benchmark performance of five models using
he original and uncontaminated data. We then present
he results of the same five models under two data attack
cenarios, with one increasing the historical load values
nd the other with decreasing the historical load values.

.1. Computational experiments

The GEFCom2012 data for the load forecasting track
ncludes 3.5 years of hourly load and temperature infor-

ation for 21 zones, where the 21st zone is the sum of the

7

other 20 zones. Following the practices reported in Hong,
Wilson, and Xie (2014) and Hong and Wang (2014), we
picked two years (2005 and 2006) and one year (2007) of
hourly load and temperature information as the training
and testing periods, respectively. The vanilla benchmark
model is effective for forecasting the loads in the res-
idential zones, which represent the majority zones of
GEFCom2012 data excluding zones 4 and 9.

For fair comparisons, the iteratively re-weighted least
squares (IRLS) model with the weight function of
‘‘bisquare’’ function (denoted as ‘IRLS_bis’) (Luo et al.,
2019), L1 regression (denoted as ‘L1’), MLR, SVR_Gau,
and WQSSVR models share exactly the same variables as
described in the vanilla model. All computational experi-
ments were performed using MATLAB (R2019a) software
on a desktop equipped with an Intel Xeon Processor
2.99 GHz CPU, 31.3 GB usable RAM and Microsoft Win-
dows 10 Enterprise. The IRLS_bis, L1, MLR, SVR_Gau, and

QSSVR models were implemented using the modules
‘robustfit’’, ‘‘linprog’’, ‘‘robustfit’’, ‘‘fitrsvm’’, and ‘‘quad-
rog’’ of MATLAB, respectively.
Following many studies in the literature of electric

oad forecasting (Hong, 2010; Hong & Fan, 2016; Hong,
inson, & Fan, 2014; Hong et al., 2016; Hong & Wang,
014; Hong et al., 2015; Luo, Hong, & Fang, 2018; Luo
t al., 2019; Luo, Hong, & Yue, 2018; Xie & Hong, 2016),
e do not normalize the load data. Moreover, to tune the
arameter Cp for WQSSVR model, we divided the training
ata set into three equivalent parts, with the first two
arts and last part as the pre-training data and validation
ata to select Cp in the set of {228, 229, . . . ,236,237}. The

parameter δ in the constraints of WQSSVR′ model in Sec-
ion 3.3 is selected as (γ − MED)h, where γ and MED are
defined at the start of Section 3.4 and also calculated for
obtaining the weights of training points, h = 4 or 0.5.

4.2. Benchmarking performance without data integrity at-
tacks

Table 1 records the mean absolute percentage error
(MAPE) values of all five models without data integrity
attacks. A smaller MAPE value indicates the more accu-
rate load forecasts yielded by the corresponding model.
Overall, the MLR and SVR_Gau models produce the most
and least accurate load forecasts among all five models,
respectively. The performance of WQSSVR is as close as
that of L1 regression or IRLS_bis model in terms of load
forecast accuracy. Since the results at low level zones do
not add much information nor change our final conclu-
sions and findings, we focus on the aggregated zone Z21
for experiments of load forecasting under data integrity
attacks to avoid verbose presentation.

4.3. Data integrity attacks targeting economic losses

When the values of the majority part of the load his-
tory are increased, the load forecasts would likely be
higher than the nominal loads. These over-forecasts may
lead to the economic losses due to the over-capacity and
opportunity costs. Following the setup as those in Luo

et al. (2019), Luo, Hong, and Yue (2018), Sobhani et al.
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Table 1
MAPE (%) of hourly load forecast without data attacks.
Zone IRLS_bis L1 MLR SVR_Gau WQSSVR

21 5.30 5.33 5.22 6.31 5.38

1 7.08 7.08 7.01 8.34 6.93
2 5.56 5.52 5.62 7.39 5.59
3 5.56 5.52 5.62 7.39 5.59
5 9.69 9.64 9.88 10.51 9.69
6 5.56 5.53 5.55 7.24 5.59
7 5.56 5.52 5.62 7.46 5.60
8 7.59 7.59 7.50 8.74 7.39
10 6.70 6.79 6.70 9.53 6.64
11 7.97 8.20 7.70 9.63 7.64
12 6.95 6.99 6.78 8.35 7.31
13 7.48 7.44 7.39 8.11 7.54
14 9.41 9.40 9.38 10.52 9.92
15 7.38 7.40 7.44 7.96 7.76
16 8.13 8.11 8.12 9.10 8.23
17 5.31 5.30 5.26 6.93 5.32
18 6.77 6.73 6.72 7.71 6.75
19 7.88 7.87 7.90 8.86 7.94
20 5.73 5.68 5.74 7.44 5.66
Avg 7.02 7.02 7.00 8.40 7.06

4 15.83 15.89 16.08 15.86 15.90
9 164.05 153.48 139.16 157.52 159.93

Table 2
Averages of MAPE (%) and SE of MAPE averages (%) for under normally
distributed data attacks targeting economic losses.

p%

k N(0.25, 0.52) N(0.5, 0.52) N(0.75, 0.52)

IRLS_bis

40

5.23/0.01 5.23/0.01 5.24/0.01
L1 5.16/0.02 5.19/0.02 5.50/0.03
MLR 9.23/0.18 17.41/0.27 27.50/0.40
SVR_Gau 6.39/0.05 6.91/0.06 8.45/0.13
WQSSVR 5.28/0.05 5.27/0.05 5.31/0.05

IRLS_bis

50

5.46/0.01 10.44/0.29 28.22/0.46
L1 5.24/0.01 5.97/0.09 9.63/0.18
MLR 11.03/0.25 22.66/0.40 35.01/0.47
SVR_Gau 6.84/0.06 8.87/0.14 14.27/0.22
WQSSVR 5.34/0.07 5.60/0.09 5.84/0.09
IRLS_bis

60

7.90/0.11 21.93/0.45 38.60/0.42
L1 5.47/0.03 10.35/0.12 25.27/0.34
MLR 13.29/0.39 27.36/0.43 42.27/0.41
SVR_Gau 7.66/0.10 12.93/0.27 25.13/0.39
WQSSVR 5.64/0.08 5.81/0.06 11.97/0.31
IRLS_bis

70

11.84/0.21 29.19/0.35 46.26/0.39
L1 6.80/0.14 20.56/0.39 41.61/0.91
MLR 15.22/0.42 32.52/0.38 48.59/0.36
SVR_Gau 9.12/0.07 19.77/0.30 38.45/0.29
WQSSVR 5.86/0.06 9.58/0.35 26.00/0.61
IRLS_bis

80

15.96/0.36 35.27/0.46 56.23/0.35
L1 10.67/0.31 31.18/0.75 57.01/0.28
MLR 17.89/0.42 37.20/0.45 57.55/0.31
SVR_Gau 11.87/0.14 28.73/0.29 51.86/0.19
WQSSVR 7.96/0.26 19.28/0.52 47.90/0.19
IRLS_bis

90

19.02/0.43 40.97/0.49 63.60/0.40
L1 16.10/0.62 39.62/0.86 64.38/0.84
MLR 19.76/0.42 41.98/0.48 64.19/0.41
SVR_Gau 15.84/0.25 37.25/0.34 60.69/0.26
WQSSVR 12.39/0.95 32.14/2.28 62.97/2.47

(2020), and Zheng et al. (2020), the data integrity attack
on the training data set targeting economic losses is math-
ematically simulated by randomly picking k% of all obser-
vations with their load values being deliberately increased
 o

8

by p%. These selected observations become outliers, a.k.a.
the attacked points.

Using the training data set under the simulated data
integrity attack targeting economic losses, we estimate
the parameters for all five models. The original testing
data set without data attacks is used to calculate the
MAPE values of forecasted load. To comprehensively eval-
uate the performance of all five models, we conducted
three groups of computational experiments under nor-
mally distributed or uniformly distributed data attacks
following the practice in Luo, Hong, and Fang (2018),
Sobhani et al. (2020), Spiliotis et al. (2019), and Zheng
et al. (2020):

(1) vary k from 40 to 90 with the increment of 10,
p% is generated by the normal distribution N(µ,
σ 2), where µ is varied from 0.25 to 0.75 with the
increment of 0.25 and σ is 0.5;

(2) k is 70, p% is generated by the normal distribution
N(µ, σ 2), where µ is 0.5 and σ is varied from 0.25
to 1.5 with the increment of 0.25;

(3) k is 70, p% is generated by the uniform distribution
U(a,b).

For each (k, p) pair, we repeated the test with ran-
omly selected k% observations for 10 times. For each
odel tested in the three groups of experiments, the
verages of MAPE values of 10 experiments are reported
n Tables 2, 3, and 4, respectively. The standard errors (SE)
or the averages of MAPE values are also recorded in these
ables to quantify the uncertainty in the reported MAPE
verages. Notice that the standard error is calculated as
ividing the square root of 10 into the standard deviation
f 10 MAPE values. From these three tables, we have the
ollowing observations to make:

1. For most tested computational experiments, the
QSSVR model produces more accurate forecasts than

he other four models, especially for large k and large
ean of p. This is mainly because the relative importance

i.e., weights) of attacked points are greatly reduced in
QSSVR model, which mainly utilizes the information of
ormal points.
2. For small-scale data attacks (such as k = 40) or

mall mean of p % (such as N(0.25, 0.52), U(−0.9, 0.9), and
o forth), the L1 regression and IRLS_bis models perform
ell. Similar observations can be found in Jian Luo et al.
2019). However, as k increases or the mean of p in-
reases, the WQSSVR model shows increasing dominance
ver other tested models.
3. From Table 3, as the standard deviation of nor-

ally distributed data attacks increases, the MAPE aver-
ges of WQSSVR model and L1 regression decrease. This is
ainly because the ratio of training points with reduced

oads increases closer to the ratio of training points with
ncreased loads.

4. From Table 4, as the mean of uniformly distributed
ata attacks increases (i.e., the ratio of the number of
oints with increased loads to that of points with de-
reased loads increases as: 5/5, 6/4, 7/3, 8/2, 9/1, and
0/0), the WQSSVR model shows the increasing advantage

ver other four models.
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Table 3
Averages of MAPE (%) and SE of MAPE averages (%) under normally distributed data attacks targeting economic losses.

p%

f k N(0.5, 0.252) N(0.5, 0.52) N (0.5, 0.752) N(0.5, 12) N(0.5, 1.252) N(0.5,1.52)

IRLS_bis

70

31.50/0.21 29.19/0.35 25.72/0.41 23.27/0.67 23.73/1.00 23.74/1.08
L1 31.77/0.43 20.56/0.39 13.08/0.57 9.53/0.27 7.97/0.22 6.82/0.15
MLR 32.43/0.26 32.52/0.38 32.12/0.60 31.40/0.96 33.37/1.46 32.30/1.56
SVR_Gau 28.52/0.16 19.77/0.30 16.31/0.29 14.26/0.35 14.80/0.32 15.05/0.53
WQSSVR 28.25/1.74 9.58/0.35 7.03/0.21 6.70/0.23 6.64/0.17 6.59/0.06
Table 4
Averages of MAPE (%) and SE of MAPE averages (%) under uniformly distributed data attacks targeting economic losses.

p%

k U(−0.9, 0.9) U(−0.72, 1.08) U(−0.54, 1.26) U(−0.36, 1.44) U(−0.18, 1.62) U(0, 1.8)

IRLS_bis

70

7.06/0.05 9.45/0.46 19.04/0.37 31.52/0.86 44.34/0.51 58.25/0.77
L1 5.58/0.02 5.61/0.06 8.25/0.10 16.73/0.70 30.51/0.85 49.05/1.26
MLR 6.91/0.06 11.13/0.40 23.04/0.37 34.76/0.71 46.89/0.45 60.14/0.71
SVR_Gau 9.79/0.15 8.50/0.17 11.24/0.24 18.26/0.46 31.21/0.30 46.38/0.61
WQSSVR 6.79/0.21 6.86/0.18 6.13/0.06 7.37/0.43 13.32/0.68 27.07/1.29
Fig. 1. Fitted (2005/1/7–2005/1/13) hourly load profile under normally distributed data attacks targeting economic losses.
5. The SE of all tested models are much smaller than
the related MAPE averages. For most tested computational
experiments, the SE of MAPE averages of WQSSVR are
smaller than those of other tested models, which indicates
that the performance of WQSSVR is more stable in terms
of load forecast accuracy.

The fitted hourly load profiles of all tested models for
one representative period under normally distributed and
uniformly distributed data integrity attacks are shown in
Figs. 1 and 2 with k = 70 and p% following N(0.5, 0.52)
and U(−0.36, 1.44), respectively. The period of one week
is in the winter of year 2005 (a training year). From these
two figures, we can observe that all five models are more
or less over-fitting the actual load for the training period,
due to the data integrity attacks targeting economic losses
(i.e., the mean of p% is positive so that the loads of
most attacked points are larger than those of the original
points). The fitting curve provided by the WQSSVR model
is much closer to the actual data than that provided by
each of other four models.
9

Moreover, the forecasted hourly load profiles of all
tested models for one representative period under nor-
mally distributed and uniformly distributed data integrity
attacks are shown in Figs. 3 and 4 with k = 70 and p%
following N(0.5, 0.52) and U(−0.36, 1.44), respectively.
The period of one week is in the winter of year 2007
(a testing year). From these two figures, we can observe
that all five models are more or less over-predicting the
actual load for the testing period, due to the data integrity
attacks targeting economic losses (i.e., the mean of p% is
positive). The predicted loads provided by the WQSSVR
model are much closer to the actual loads than those
provided by other four models. In Fig. 5, the curve rep-
resenting the weights of points during two days in the
summer of training year 2006 under data integrity attacks
with k = 70 and p% following N(0.5, 0.52) for WQSSVR
model is also plotted. Notice that the loads of attacked
points increased by the percentage following a normal
distribution with the mean of 50% and standard deviation
of 50%, so the loads of most attacked points are larger
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Fig. 2. Fitted (2005/1/7–2005/1/13) hourly load profile under uniformly distributed data attacks targeting economic losses.
Fig. 3. Forecasted (2007/1/7–2007/1/13) hourly load profile under normally distributed data attacks targeting economic losses.
than those of the original points. We can observe that the
small weights are assigned to the attacked observations
with large perturbation magnitude (i.e., outliers or noise).
For example, the attacked observations at hours 5, 6, 17,
19, 21, 23, 25, 29, 33, 39, and 41 are assigned the weights
very close to 0.

4.4. Data integrity attacks targeting system blackouts

While increasing the historical load may result in over-
orecasts, decreasing the historical load may lead to the
nder-forecasts so that the risk for brownouts or even
lackouts is increased. Following Section 4.3, we can cre-
te a different type of data integrity attacks targeting
ystem blackouts, by randomly picking k% of the observed
load data in the training period and then decreasing them
by p%. Two groups of computational experiments under
such data integrity attacks are conducted as the following

two steps:

10
(1) Let k = 40, and vary p% from 10% to 60% with the
increment of 10%.

(2) Let k = 40, p% is generated by the uniform distri-
bution U(a,b).

For each (k, p) pair, we repeat the test with randomly
selected k% observations for 10 times. Here we primar-
ily conduct representative experiments to avoid verbose
presentation. For each model tested in the two groups
of experiments, the averages of MAPE values and SE of
MAPE averages of 10 experiments are reported in Tables 5
and 6, respectively. From these two tables, we have the
following similar observations:

(1) For most tested computational experiments, the
WQSSVR model produces more accurate forecasts
than other tested models, especially for large mean
of p.

(2) From Table 6, as the mean of p increases (i.e., the

ratio of the number of points with decreased loads
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Fig. 4. Forecasted (2007/1/7–2007/1/13) hourly load profile under uniformly distributed data attacks targeting economic losses.
Fig. 5. Hourly load profile (2006/8/4–2006/8/5) and data weights for WQSSVR under data attacks targeting economic losses.
Table 5
Averages of MAPE (%) and SE of MAPE averages (%) under various levels of data integrity attacks targeting system
blackouts.

p%

k 0.1 0.2 0.3 0.4 0.5 0.6

IRLS_bis

40

6.97/0.03 9.77/0.09 13.08/0.14 16.62/0.19 20.37/0.24 23.88/0.28
L1 6.64/0.04 7.40/0.08 7.63/0.10 7.82/0.10 8.05/0.11 8.15/0.12
MLR 6.97/0.03 9.90/0.08 13.36/0.13 17.04/0.17 20.93/0.22 24.59/0.26
SVR_Gau 8.50/0.03 10.76/0.05 12.17/0.09 13.34/0.09 14.70/0.12 16.00/0.23
WQSSVR 6.37/0.02 6.88/0.03 6.17/0.05 6.12/0.09 6.22/0.10 6.23/0.12
Table 6
Averages of MAPE (%) and SE of MAPE averages (%) under uniformly distributed data attacks targeting system blackouts.

p%

k U(−0.5, 0.5) U(−0.4, 0.6) U(−0.3, 0.7) U(−0.2, 0.8) U(−0.1, 0.9) U(0, 1)

IRLS_bis

70

5.88/0.05 8.64/0.14 14.04/0.21 20.60/0.23 28.01/0.27 34.88/0.26
L1 5.47/0.04 6.30/0.05 8.29/0.11 12.86/0.23 20.84/0.41 29.63/0.38
MLR 5.84/0.04 9.40/0.16 15.54/0.22 22.02/0.22 29.21/0.26 35.81/0.26
SVR_Gau 7.58/0.03 9.32/0.06 12.21/0.10 16.95/0.11 23.91/0.20 32.13/0.22
WQSSVR 6.29/0.17 6.37/0.24 6.21/0.11 7.66/0.25 11.38/0.35 18.61/0.71
11
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Table 7
Forecast error in MAPE (%) and MSE (1010) under normally distributed data attacks targeting economic losses.

p%

k N(0.5, 0.52) N(0.75, 0.52) N(1, 0.52) N(1.25, 0.52) N(1.5, 0.52) N(1.75, 0.52) N(2, 0.52)

IRLS_bis

5

5.29/1.47 5.29/1.47 5.29/1.47 5.29/1.47 5.29/1.47 5.29/1.47 5.29/1.47
L1 5.29/1.48 5.27/1.46 5.27/1.46 5.27/1.46 5.27/1.46 5.27/1.46 5.27/1.46
MLR 5.31/1.44 5.80/1.50 6.30/1.77 6.63/1.98 7.61/2.51 8.67/3.26 9.96/4.16
SVR_Gau 6.26/2.21 6.24/2.20 6.24/2.20 6.24/2.20 6.24/2.20 6.24/2.20 6.24/2.20
WQSSVR 5.24/1.41 5.24/1.41 5.24/1.41 5.24/1.41 5.24/1.41 5.24/1.41 5.24/1.41
Table 8
Forecast error in MAPE (%) and MSE (1010) under normally distributed data attacks targeting economic losses.

p%

k N(0.025, 0.052) N(0.05, 0.12) N(0.075, 0.152) N(0.1, 0.22) N(0.125, 0.252) N(0.15, 0.32)

IRLS_bis

100

5.09/1.25 5.71/1.46 6.99/2.02 8.81/3.04 10.80/4.40 12.72/5.89
L1 5.11/1.27 5.71/1.46 7.06/2.09 8.85/3.09 10.76/4.36 12.63/5.93
MLR 5.09/1.24 5.75/1.50 7.05/2.05 8.88/3.07 10.98/4.50 12.80/5.96
SVR_Gau 5.92/1.96 6.29/2.10 7.23/2.41 8.54/3.20 10.13/4.22 12.07/5.77
WQSSVR 5.07/1.23 5.51/1.38 6.55/1.85 8.31/2.78 9.94/3.92 11.31/5.13
w
r

t
E
(
s

to that of points with increased loads increases
as: 5/5, 6/4, 7/3, 8/2, 9/1, and 10/0), the WQSSVR
model shows the increasing advantage over other
four models.

5. Discussion

In this section, we first test the load forecasting mod-
ls for other possible normally distributed data attacks
argeting economic losses and then test them on differ-
nt data sets under uniformly distributed data attacks
argeting system blackouts. Finally, the robustness of the
roposed WQSSVR is discussed.

.1. Other possible normally distributed data attacks target-
ng economic losses

To further investigate the performance of the proposed
QSSVR model for two possible types of data attacks, we

imulated the normally distributed data integrity attacks
argeting economic losses as the following two steps: (1)
is 5, p% is generated by the normal distribution N(µ, σ 2),

where µ is varied from 0.5 to 2 with the increment of 0.25
and σ is 0.5. (2) k = 100, p% being generated by the nor-
mal distribution N(µ, σ 2), where µ is varied from 0.025
o 0.15 with the increment of 0.025 and σ = 2µ. Then
he five load forecasting models were tested on these data
ets and the computational results for these two types of
ata attacks are recorded in Tables 7 and 8, respectively.
he mean square error (MSE), an L2 norm-based measure-
ent of errors, was also used to investigate the forecast
ccuracy of tested models for fair comparisons.
From Tables 7 and 8, we can see that the MAPE and

SE values of WQSSVR model are lower than those of
ther tested models, respectively. These computational
esults indicate the superior performance of the proposed
QSSVR model over the robust regression models in Luo

t al. (2019) and other commonly used load forecasting
ethods (i.e., MLR and SVR_Gau). From Table 7, for 5%
ttacked points, when the mean of p% steadily increases,
he performance of WQSSVR and robust regression mod-

ls stay the same. This indicates the strong robustness

12
of WQSSVR and robust regression models for small-scale
data attacks of large magnitudes. From Table 8, all tested
models cannot produce very accurate load forecasts as µ

increases. For future research, we are interested in study-
ing this type of data attacks comprehensively by com-
bining the robust forecasting models with some attack
detection methods.

5.2. Different data sets under uniformly distributed data
attacks targeting system blackouts

To further test the proposed WQSSVR model on other
data sets (from other zones in GEFCom2012) under data
integrity attacks, we first simulated the uniformly dis-
tributed data integrity attacks targeting system blackouts
as the following two steps: (1) The percentage of the
attacked observations in the training data was fixed to be
70%, i.e., k = 70. (2) Ten test cases were created by de-
creasing the magnitude of randomly selected load values
by p%, where p% is generated following a uniform distri-
bution U(−0.2, 0.8). Then the five load forecasting models
ere tested on these data sets and the computational
esults are recorded in Table 9.

Moreover, to further investigate the performance of
he proposed model, the load data sets of the ISO New
ngland control area and its eight wholesale load zones
called the ISONE data, publicly available from its web-
ite1) were utilized. In ISONE data, two years (2013 and
2014) and one year (2015) of hourly load and dry bulb
temperature information (for the weather station corre-
sponding to the load zone or Trading Hub) were selected
as the training and testing periods, respectively. The used
hourly load is the real-time demand for wholesale market
settlement from revenue quality metering and defined as
the sum of non-dispatchable load assets, station service
load assets, and unmetered load assets. Moreover, the
hourly loads in the control area (CA) zone are the sum
of those in the other 8 zones, which are West/Central

1 https://www.iso-ne.com/isoexpress/web/reports/pricing/-
/tree/zone-info

https://www.iso-ne.com/isoexpress/web/reports/pricing/-/tree/zone-info
https://www.iso-ne.com/isoexpress/web/reports/pricing/-/tree/zone-info
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Table 9
MAPE (%) of zones from GEFCom 2012 under data attacks targeting
system blackouts.
Zone IRLS_bis L1 MLR SVR_Gau WQSSVR

1 19.97 13.97 21.51 19.56 8.63
2 20.96 13.46 22.30 17.57 7.79
3 20.96 13.22 22.30 17.60 8.07
5 15.82 11.32 17.23 15.07 10.11
6 20.68 13.11 22.05 17.43 7.77
7 20.96 13.18 22.30 17.57 7.89
8 22.58 15.74 23.98 19.62 8.84
10 22.59 15.27 23.88 18.84 10.05
11 23.90 17.26 25.33 21.25 8.26
12 21.26 15.08 22.80 19.65 11.70
13 18.62 13.31 19.96 16.77 14.24
14 19.62 15.81 20.66 19.23 18.42
15 20.31 14.88 21.60 16.52 13.74
16 20.61 15.54 22.08 18.86 12.11
17 19.88 12.64 21.46 17.56 7.02
18 20.37 14.49 21.81 18.21 9.48
19 19.64 15.01 21.07 18.71 11.81
20 21.18 13.99 22.60 17.95 9.56
4 22.54 17.26 23.89 21.36 16.35
9 117.00 111.85 117.56 124.94 110.11

Table 10
MAPE (%) of zones from ISONE under data attacks targeting system
blackouts.
Zone IRLS_bis L1 MLR SVR_Gau WQSSVR

WCMASS 19.17 11.48 20.46 14.38 8.84
VT 20.52 12.35 21.82 13.97 8.73
SEMASS 19.91 12.46 21.35 13.58 10.46
RI 19.80 12.44 21.23 13.81 11.78
NH 19.90 12.54 21.18 16.00 10.61
NEMASS 20.11 11.99 21.51 14.24 9.16
ME 16.25 8.30 17.82 13.14 5.10
CT 20.80 12.94 22.24 14.55 9.38
Aggregate 17.64 9.41 19.06 13.18 4.86

Massachusetts (WCMASS), Vermont (VT), Southeast Mas-
sachusetts (SEMASS), Rhode Island (RI), New Hampshire
(NH), Northeast Massachusetts (NEMASS), Maine (ME),
and Connecticut (CT). Then we simulated the similar uni-
formly distributed data integrity attacks targeting system
blackouts for ISONE data by setting k to be 70 and gen-
erating p% following the uniform distribution U(−0.2,
0.8). Similarly, the load forecasting models were tested on
these data sets and the results are recorded in Table 10.
From Tables 9 and 10, we can have the observations
similar to the ones in Section 4.

5.3. Robustness

In these computational experiments, the normally dis-
tributed or uniformly distributed data integrity attacks
were designed against the load data mainly from three
aspects, i.e., different percentage (k%) of load data be-
ing perturbed maliciously, varied mean (µ%) or varied
standard deviation (σ%) of the perturbation magnitude
(i.e., varied p% ), and different types of data attacks (target-
ing economic losses or system blackouts). We ranked the
overall performance of five tested load forecasting mod-
els under data integrity attacks from the most accurate

one to the least accurate one as: WQSSVR, L1 regression, f

13
SVR_Gau, IRLS_bis, and MLR. Under no data integrity at-
tacks, the overall performance of WQSSVR, L1 regression,
IRLS_bis, and MLR models are close to each other, while
SVR_Gau produces the least accurate load forecasts.

Besides the detailed robustness analysis of IRLS_bis, L1
egression, and MLR models in Luo et al. (2019), several
bservations about the robustness of these tested mod-
ls can be made: (1) On average, the WQSSVR model
s the most robust one among all five models. This is
ainly because the WQSSVR model assigns small and

arge weights to attacked and normal points after calcu-
ating the ℓ1–normed residuals of all points, which greatly
educes the impact of attacked points. (2) The L1 regres-
ion and SVR_Gau models are more robust than IRLS_bis
nd MLR models, largely because the L1 regression and
VR_Gau models utilize ℓ1–norm (instead of ℓ2–norm in
he other two models) to measure the fitting errors. (3)
he L1 regression model outperforms the SVR_Gau model
egardless of whether the load data is under data integrity
ttacks or not, largely because the SVR_Gau model be-
omes over-fitted by utilizing the 289 variables to predict
he electric loads.

. Conclusions

This paper focuses on robust machine learning models,
hich can be utilized for load forecasting with or without
ata attacks. In this paper, the data integrity attacks on
he historical load data have been addressed from three
erspectives, namely, the percentage (k%) of data being
erturbed, the magnitude (p%) of the normally distributed
r uniformly distributed perturbations, and the type of
ata attacks (targeting economic losses or system black-
uts). Under these types of data integrity attacks, we
how that the robust load forecasting models including
he L1 regression, IRLS, and SVR with Gaussian kernel
ay easily fail to provide reliable load forecasts under

arge-scale data integrity attacks (i.e., k ≥ 40), while the
roposed WQSSVR model is capable of producing much
ore accurate and robust load forecasts. Especially when
ore observations (such as 70% of whole data set) are at-

acked with a large mean of perturbation magnitude, the
QSSVR model demonstrates much stronger robustness

han other electric load forecasting models. The compu-
ational results indicate that the load forecasting MAPE
rovided by the WQSSVR model remains under 10% even
ith 70% of the historical load data being maliciously
ecreased by 30% or increased by 50% on average.
These types of data integrity attacks represent only

small portion of potential attacks that a load forecast-
ng system may encounter. Other types of data integrity
ttacks (such as introducing slowly increasing bias to
ll data points, data integrity attacks on weather data,
alendar data, and peak periods) need to be further in-
estigated. All existing methods, including the proposed
QSSVR model, may or may not perform well in the face
f other cyber attacks such as the data integrity attacks
n temperature and dates. This study may lead to the
nvestigation of new theory and methodologies for load

orecasting under other types of data integrity attacks.
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Another approach to addressing data integrity attacks
would involve detecting attacks, identifying attacked data,
cleansing and recovering attacked data, and finally elec-
tric load forecasting. This study paves the way for further
research on anti-attack methods for electric load forecast-
ing. The anomaly detection (or data attack detection) and
similar methods, such as detecting the inconsistencies in
the relationship between the external variables and the
load data (Sobhani et al., 2020), can be incorporated with
the robust WQSSVR model to improve the load forecast
accuracy. We are also interested in studying the impact
of these data attacks on probabilistic forecasting (Hong &
Fan, 2016) for future research.
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Appendix A

The relative geometrical margin at point ((xi)T , yi)T is
defined and approximated as follows.

Definition 1. For q(xi) ≥ yi(or ≤ yi), the negative or
ositive gradient direction at point ((xi)T , yi)T with respect

to q(x) − y = q(xi) − yi intercepts the surface q(x) = y at
point ((xB)T , yB)T . The distance between points ((xi)T , yi)T
and ((xB)T , yB)T , denoted as ζi, is called the geometrical
margin at point ((xi)T , yi)T with respect to q(x) = y.

Definition 2. For q(xi) ≥ yi(or ≤ yi), given δ > 0, the
negative or positive gradient direction at point ((xi)T , yi)T
with respect to q(x)−y = q(xi)−yi intercepts the surfaces
q(x) − y = +δ (or −δ) and q(x) = y at points ((xI )T , yI )T
and ((xB)T , yB)T , respectively. The distance between points
((xI )T , yI )T and ((xB)T , yB)T , denoted as ζ i, is called the rel-
ative geometrical margin at point ((xi)T , yi)T with respect
to q(x) = y.

Without loss of generality, take the training point
((xi)T , yi)T satisfying q(xi) ≥ yi + δ as an example, Fig. A.1
illustrates the (xi, yi)T , (xI , yI )T , (xB, yB)T , ζi, and ζ i for
m = 1, where m is the number of dimensions of xi.

otice that, as shown in Fig. A.1,
(∇q

(
xi
)
,−1)

∥(∇q(xi),−1)∥2
is calcu-

ated as the positive gradient direction at point ((xi)T , yi)T
with respect to q(x) − y = q(xi) − yi. The relative
geometrical margins at different points are quite different
due to the quadratic nature of fitting surface. Similar to
14
that in Luo et al. (2016), the relative geometrical mar-
gin ζ i at point ((xi)T , yi)T is then approximated as fol-
ows: Let ((x0)T , y0)T be the origin of Rm+1,

−−−−−−−−−→
(x0, y0)(xB, yB),

−−−−−−−−→
(x0, y0)(xI , yI ) and

−−−−−−−−→
(xI , yI )(xB, yB) are supposed to be the

ectors from points ((x0)T , y0)T , ((x0)T , y0)T and ((xI )T , yI )T
o points
(xB)T , yB)T , ((xI )T , yI )T , and ((xB)T , yB)T , respectively. Then
we can infer from Definition 2 that

−−−−−−−−−→
(x0, y0)(xB, yB) =

−−−−−−−−→
(x0, y0)(xI , yI ) +

−−−−−−−−→
(xI , yI )(xB, yB) and

−−−−−−−−→
(xI , yI )(xB, yB) = −ζ i

(∇q
(
xi
)
,−1)

∥(∇q(xi),−1)∥2
. Hence, xB = xI − ζ i

∇q
(
xi
)

∥(∇q(xi),−1)∥2
and yB =

yI − ζ i
−1

∥(∇q(xi),−1)∥2
. Taylor’s expansion says that q

(
xB
)

≈

q
(
xI
)

+ ∇q
(
xI
)T (xB − xI

)
. Notice that, q

(
xB
)

= yB and
q
(
xI
)

= yI + δ, then we have

yB ≈ yI + δ + ∇q
(
xI
)T (

xB − xI
)

= yI + δ + ∇q
(
xI
)T (

−ζ i
∇q
(
xi
)

∥(∇q
(
xi
)
, −1)∥2

)
.

By using yB = yI − ζ i
−1

∥(∇q(xi),−1)∥2
, we can infer that

ζ i ≈
δ∥(∇q

(
xi
)
,−1)∥2

∇q(xI)
T
∇q(xi)+1

. Similarly,

q
(
xI
)

≈ q
(
xi
)
+ ∇q

(
xi
)T (

xI − xi
)

q
(
xi
)

≈ q
(
xI
)
+ ∇q

(
xI
)T (

xi − xI
)

and xI − xi = −
(ζi−ζ i)∇q

(
xi
)

∥(∇q(xi),−1)∥2
, inferred by

−−−−−−−−→
(x0, y0)(xI , yI ) −

−−−−−−−−→
(x0, y0)(xi, yi) =

−−−−−−−−→
(xi, yi)(xI , yI ). Then ∇q

(
xI
)T

∇q
(
xi
)

≈

∇q
(
xi
)T

∇q
(
xi
)
. Hence, for point ((xi)T , yi)T ,

ζi =
((xB)T , yB)T − ((xI )T , yI )T


2

≈
δ∥(∇q

(
xi
)
, −1)∥2

∇q
(
xI
)T

∇q
(
xi
)
+ 1

≈
δ

∥(∇q
(
xi
)
, −1)∥2

=
δ

∥(Wxi + b, −1)∥2
.

Appendix B

The WQSSVR model is equivalently reformulated for
one smaller-sized optimization problem as the following
four steps:
(1) Define Ψ be the vector formed by taking the m ele-
ments in the diagonal of matrix W, i.e.,

≜ (w11, w22, . . . , wmm)T ∈ Rm

2) Construct an m × m matrix Mi for each training point
i

= (xi1, x
i
2, . . . , x

i
m)

T
∈ Rm as follows. For the diagonal

f Mi, let the jth element in the jth row of matrix Mi be
i
j, j = 1, 2, . . . ,m. The other elements of Mi are set to be
0.
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Fig. A.1. Demonstration of various margins in two dimensions.
(3) Denote Im×m as the m-dimensional identity matrix, let

Hi ≜ (Mi, Im×m) ∈ Rm×2m, i = 1, 2, . . . , n,

z ≜
(
Ψ T , bT

)T
∈ R2m

si ≜
(
1
2
xi1x

i
1,

1
2
xi2x

i
2, . . . ,

1
2
xim−1x

i
m−1,

1
2
ximx

i
m, xi1, x

i
2, . . . , x

i
m

)T

∈ R2m.

Then the first term in the objective of model (WQSSVR)
becomes

n∑
i=1

βi∥Wxi + b∥2
2

=

n∑
i=1

βi∥Hiz∥2
2

=

n∑
i=1

βi (Hiz)T (Hiz)

=

n∑
i=1

zT (βiHT
i Hi)z,

nd the constraints in the WQSSVR model becomes⏐⏐⏐⏐yi − (
1
2
(xi)TWxi + bT xi + c)

⏐⏐⏐⏐
=
⏐⏐yi − (sTi z + c)

⏐⏐
≤δ + ξi,

i = 1, 2, . . . , n.
(4) Let G ≜

∑n
i=1 βiHT

i Hi ∈ R2m×2m, then the WQSSVR
odel can be equivalently reformulated as the following
QSSVR’ model:

in
z,c,ξ

zTGz + Cp

n∑
i=1

βiξi

.t. δ + ξi ≥ yi − (sTi z + c) ≥ −δ−ξi, i = 1, 2, . . . , n,
ξi ≥ 0, i = 1, 2, . . . , n,
15
where δ, Cp > 0 are the given parameters. And the
size of reformulated WQSSVR’ model is smaller than the
WQSSVR model.
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