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We compare the performance of two approaches for finding the optimal set of products to display to

customers landing on Alibaba’s two online marketplaces, Tmall and Taobao. Both approaches were placed

online simultaneously and tested on real customers for one week. The first approach we test is Alibaba’s

current practice. This procedure embeds thousands of product and customer features within a sophisticated

machine learning algorithm that is used to estimate the purchase probabilities of each product for the

customer at hand. The products with the largest expected revenue (revenue× predicted purchase probability)

are then made available for purchase. The downside of this approach is that it does not incorporate customer

substitution patterns; the estimates of the purchase probabilities are independent of the set of products

that eventually are displayed. Our second approach uses a featurized multinomial logit (MNL) model to

predict purchase probabilities for each arriving customer. In this way we use less sophisticated machinery

to estimate purchase probabilities, but we employ a model that was built to capture customer purchasing

behavior and, more specifically, substitution patterns. We use historical sales data to fit the MNL model

and then, for each arriving customer, we solve the cardinality-constrained assortment optimization problem

under the MNL model online to find the optimal set of products to display. Our experiments show that

despite the lower prediction power of our MNL-based approach, it generates significantly higher revenue per

visit compared to the current machine learning algorithm with the same set of features. We also conduct

various heterogeneous-treatment-effect analyses to demonstrate that the current MNL approach performs

best for sellers whose customers generally only make a single purchase.
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1. Introduction

The assortment optimization problem has come to be one of the most well-studied problems in

the field of revenue management. In this problem, a retailer seeks the revenue-maximizing set of

products (or assortment) to offer each arriving customer. In its simplest form, the assortment opti-

mization problem does not place any restrictions on the set of feasible assortments the retailer

* The first two authors contributed equally and are ranked alphabetically.
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can offer. This version of the problem is often referred to as the uncapacitated assortment opti-

mization problem. A well-studied extension of this simplest version adds a cardinality constraint,

which limits the total number of products the retailer can include in any offered assortment. When

each displayed product consumes the same amount of space (physical or virtual), this constraint

is akin to a limit on the available shelf space or a restriction on the number of products that

can be displayed on a single web page. For example, on the mobile version of Amazon, there is a

section labeled “customers who bought this also bought,” where at most three products can be

recommended.

The central difficulty in each variant of the assortment problem is that the retailer must carefully

balance the appeal of her assortment as a whole in addition to the relative appeal of the individual

products that are most profitable. Adding a product to an assortment diversifies a retailer’s display

and thus increases her market share, but this additional product can cannibalize sales of the

products that previously were a part of the assortment. The exact nature of this trade-off is dictated

by the underlying customer choice model through which the retailer models customer purchasing

behavior. For a fixed assortment, these models map product and customer features to the individual

purchase probabilities of products included in this assortment. A variety of customer choice models

have been developed in the ‘ ‘ ‘ ‘economics and marketing literature to capture different nuances

in customer purchasing behavior. Unfortunately, there is no perfect choice model, since the models

that capture the most general forms of customer behavior are precisely those with an overwhelming

number of parameters to estimate and whose corresponding assortment problems are difficult to

solve.

The necessity to better understand this trade-off with regard to the wealth of existing choice

models has given rise to two general research problems that over the last decade have guided much

of the work in the field of revenue management. These two problems are summarized below.

1. Estimation: Can a choice model’s parameters be efficiently and accurately estimated from

historical data?

2. Assortment Optimization: Given a fully specified customer choice model, is it possible

to develop efficient algorithms with provable performance guarantees for the uncapacitated

assortment problem and variants thereof?

In developing answers to the questions above, the field progresses towards the ultimate goal of

developing revenue management systems that use assortment optimization to guide product offering

decisions. However, the recent success of machine learning methods as powerful tools for predic-

tion calls into question the practical relevance of customer choice models and their corresponding

assortment problems. In other words, if it is indeed the case that machine learning models can
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significantly outperform choice models in terms of their ability to accurately predict customer pur-

chasing patterns, then why would a retailer ever adopt the latter? The answer, we find, is that

accurate predictions alone are not enough to guarantee that subsequent operational decisions made

from these estimates will be profitable. Of equal importance, is the sophistication with which the

subsequent optimization problem captures key operational trade-offs.

We derive these insights by implementing and testing two distinct large-scale product recom-

mender systems in collaboration with the Alibaba Group, the largest Chinese online and mobile

commerce company whose Gross Merchandise Value (GMV) has surpassed US$485 billion as of

2016. More specifically, we consider a setting where Alibaba must present customized six-product

assortments to inquiring customers, with the goal of maximizing revenue. The customers are pre-

sented with these personalized six-product displays after receiving discount coupons, which can

be applied to any of the six offered products. Henceforth, we refer to this problem as the Alibaba

Product Display Problem. The first approach that we develop and test uses the classic multinomial

logit (MNL) model (Luce 1959, McFadden 1974) to capture customer preferences, and then solves

a cardinality constrained assortment optimization to guide product display decisions. The second

approach is Alibaba’s current practice, which utilizes sophisticated machine learning methods to

understand customer purchasing patterns. The implementation of both approaches unfolds in two

steps that sequentially address how to estimate demand, and then how to use these estimates to

identify profitable six product displays. We refer to this first step as the estimation problem, and

the second as the assortment problem.

Contributions. Our foremost contribution is that we show that product recommendation systems

built on the framework of the MNL model have the potential to outperform machine-learning-based

approaches. We show this result by conducting a large-scale field experiment for one week in March

2018 involving more than 5 million customers. This experiment compares the performance of our

MNL-based approach with Alibaba’s state-of-the-art machine-learning-based approach, when both

approaches use the top 25 features that are most predictive of customers’ purchasing behaviors.

Interestingly, we find that the fitted machine learning models produce far more accurate estimates

of the purchase probabilities than the fitted MNL models, yet the MNL-based approach generates

28% higher revenue per visit. Furthermore, in September 2018, we conduct another five-day-long

large-scale experiment involving more than 3 million customers, which compares our MNL-based

approach with Alibaba’s state-of-the-art machine-learning-based approach on all available features.

In this full-feature setting, we demonstrate that our MNL-based approach generates 3.37% higher

revenue per visit compared to Alibaba’s current machine-learning-based recommender system. Due

to data security issues, we were not given access to visit-level data from Alibaba for this second

experiment so we cannot compute the accuracy of the fitted model for each approach. However,
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we were given the day-level aggregated results, which we used to summarize the performance of

each approach.

As mentioned above, the ever-growing suite of machine learning algorithms are powerful tools

for prediction; they help up us uncover and understand complex patterns in our data. However,

the estimates derived from these approaches might not capture critical problem specific nuances

due to the fact that they were developed as general tools. In contrast, the MNL model is simple,

but it was specifically created to capture customer purchasing behavior, and more specifically, to

account for substitution patterns; the phenomenon that describes the event in which a customer

settles for a suitable alternative when she does not find her most preferred product available for

purchase. Consequently, when this classic model is used to capture the demand for each product,

we ultimately consider a more nuanced version of the assortment problem, in which substitution

effects are critically accounted for.

Our second contribution comes in the form of a novel approximation scheme for a special con-

strained version of the assortment problem under the MNL model. Our field experiments only

consider the problem of choosing optimal six product displays, however there are other opera-

tional levers that Alibaba could exploit in this discount coupon setting to increase revenues. In

Appendix B, we consider two such levers, namely price and icon size. For the pricing problem,

Alibaba must simultaneously decide which products to offer as well as the prices to charge for each

of these offered products. For the icon size problem, we allow for Alibaba to choose the size of the

product icon for each displayed product. In this setting, there is a limit on the total available screen

space for all displayed products, but we do not enforce that exactly six products have to offered.

Our work in this section builds off the results in Davis et al. (2013) and Feldman and Paul (2017),

who both provide general schemes for solving constrained assortment problems. We present these

results in Appendix B in an effort to avoid breaking up the exposition of the two approaches that

we develop and test, which are the backbone of our work.

Finally, while we make substantial progress in establishing the practical underpinning for assort-

ment optimization, there is still plenty of work to be done to cement this notion. Along these

lines, an important contribution of our work is that it sheds light on new directions for work on

assortment optimization that is focused on shifting research in this realm closer to the sphere of

practicality. We delay a detailed description of these new problems until Section 7, since their

importance is magnified once the details of our current system, along with its accompanying flaws,

are understood. Nonetheless, we highlight the potential for future work early on to emphasize that

even though our current MNL-based approach is quite fruitful, there are many opportunities for

improvement.
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Organization. The majority of the remaining content is centered around providing all of the

necessary details of our field experiments. Along these lines, in Section 2, we provide a detailed

overview of the discount coupon setting that we consider on Alibaba, which is the canvas for our field

experiments. Sections 3 and 4 describe how we address the respective estimation and assortment

problems within the two approaches that we test. Our goal in these two sections is not only to

provide important implementation details, but also to highlight advantages and disadvantages

inherent to each approach. This discussion helps us explain the superior performance of our MNL-

based approach, and also sheds light on additional advantages of using choice models to capture

customer purchasing patterns. The full details and results of our field experiments regarding the

25-feature versions of both approaches are given in Sections 5 and 6 respectively. Due to the

data availability issues mentioned above, the results for the experiments comparing the full-feature

versions of the two approaches is relegated to Appendix D.

1.1. Related Literature

There is an expansive collection of previous works regarding customer choice models and their

accompanying assortment and estimation problems. Consequently, it is beyond the scope of this

work to provide a full summary of all the past studies with related themes. Instead, since the focus

of this paper is on the MNL choice model, we review past work that primarily relates to logit-

based choice models, including the MNL, mixed multinomial logit (Mixed-MNL) and nested logit

choice models. In doing so, we highlight the advantages and disadvantages of using each of these

choice models with regard to the tractability of their corresponding assortment and estimation

problems. We also include a summary of past work on the network revenue management problem,

and in doing so, we illustrate that the revenue management community has implicitly considered

the trade-offs between using machine learning models versus customer choice models to capture

demand for many years. However, they have done so without any sort of empirical test.

The MNL choice model and mixtures thereof. The MNL choice model is perhaps the most well-

studied choice model in the revenue management literature. As mentioned earlier, the MNL orig-

inally was conceived by Luce (1959) and its practical use later was most notably established by

McFadden (1974), who, among other things, shows that the log-likelihood function is concave

in the model parameters. To the best of our knowledge, Vulcano et al. (2012) are the first to

explicitly consider estimating the parameters of an MNL choice model in a revenue management

context. Instead of directly maximizing the log-likelihood, they develop an iterative expectation-

maximization (EM) approach that is based on uncensoring the most preferred product of each

customer. Later, Vulcano and Abdullah (2018) use a similar minorization-maximization (MM)

algorithm to estimate the parameters of an MNL model from historical transaction data. They
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show that this newly proposed technique produces accurate estimates while being computationally

superior to the previously mentioned EM approach.

The seminal works of Talluri and van Ryzin (2004) and Gallego et al. (2004) establish that the

assortment optimization problem under the MNL admitted an optimal polynomial-time algorithm.

These works show that the optimal assortment in this setting is a so-called revenue-ordered assort-

ment that consists of some subset of the highest revenue products. When a cardinality constraint

is added to the assortment problem, Rusmevichientong et al. (2010) provide a purely combinato-

rial polynomial-time algorithm, which is able to identify the optimal assortment. Building on this

result, Davis et al. (2013) show that the MNL assortment problem subject to any set of totally uni-

modular (TU) constraints can be formulated as a concise linear program. They go on to show that

a variety of realistic operational constraints can be encoded as TU constraint structures, including

various forms of the aforementioned cardinality constraint.

The mixed MNL choice model segments the customer population into multiple customer types

whose buying decisions are each governed by a unique MNL model. Interestingly, McFadden and

Train (2000) show that this mixed MNL model is the most general choice model built on the

classic framework of random utility maximization (RUM), in which arriving customers associate

random utilities with each offered product and then purchase the product with the largest posi-

tive utility. Given that the mixed MNL model has the potential to capture a broad spectrum of

consumer purchasing behavior, there has been much work in recent years that studies its corre-

sponding estimation and assortment problems. For example, Subramanian et al. (2018) formulate

the estimation problem as an infinite dimensional convex program and then provide a conditional

gradient approach that exploits the structure of the choice probabilities to yield a local maximum

of the log-likelihood. This modeling richness comes at a cost, however, as Désir et al. (2014) show

that it is NP-Hard to approximate the assortment problem under the mixed MNL model within

a factor of O(n1−ε) for any ε > 0. In fact, Rusmevichientong et al. (2014) show that the prob-

lem remains NP-Hard even when the underlying population is described by only two customer

types. On the positive side, Désir et al. (2014) provide an fully polynomial-time approximation

scheme (FPTAS) for the assortment problem whose run time scales exponentially in the number

of customer types. When the preferences of the customer types take on a special nested structure,

Feldman and Topaloglu (2017) show that an FPTAS can be salvaged whose run time is polynomial

in all input parameters.

The nested logit choice model. Under the nested logit choice model, the products are partitioned

into nests and each customer’s purchasing process unfolds in two steps: the customer first selects a

nest and then makes a purchase from among the products in the chosen nest. We point the reader

to Train (2009) for an excellent formal description of this model as well as an iterative maximum
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likelihood approach for estimating its underlying parameters. Davis et al. (2014) are the first to

consider the uncapacitated assortment problem under the nested logit model. They show that the

problem’s hardness depends on whether the customer is allowed to leave the store without making

a purchase after having selected a nest. In cases where a customer must make a purchase, the

authors show that the problem admits a polynomial-time algorithm, which cleverly exploits the

structure of the choice probabilities. On the other hand, the assortment problem is shown to be

NP-Hard in cases where the customer can leave the store without making a purchase at either of

the two steps in the purchasing process. Gallego and Topaloglu (2014) and Feldman and Topaloglu

(2015) devise constant factor approximations for various constrained versions of the assortment

problem under the nested logit model. Li et al. (2015) provide an exact polynomial-time algorithm

for assortment optimization under the d-level nested logit model, in which nesting of the products

is d-levels deep.

Network revenue management. The revenue management community has implicitly considered

the trade-offs between using machine learning models versus customer choice models to capture

demand for many years but without a formal empirical test. Consider, for example, the classical

network revenue management problem, where the goal is to adjust the set of offered products over a

selling horizon when the sale of each product consumes a combination of resources. On the one hand,

there are numerous papers (Talluri and Van Ryzin 1998, 1999, Topaloglu 2009, Adelman 2007) that

consider this problem under the so-called independent demand model, where the probability that

product j is purchased in time period t is given by pjt. On the other hand, there are many other

works (Zhang and Cooper 2005, Zhang and Adelman 2009, Talluri 2010, Gallego et al. 2011) that

consider the same problem when customer purchasing patterns are guided by a choice model, and

so the probability that product j is purchased in time period t is Pj(St),where St is the assortment

of products offered in time period t. In practice, it is unclear which of these two approaches will be

most lucrative. Further, the fundamental trade-off between the two approaches is exactly the one

we consider when evaluating the two approach we implement for the Alibaba Display Problem.

Namely, when customer behavior is governed by the independent demand model, the purchase

probabilities can be accurately estimated with sophisticated machine learning methods. However,

when these estimates seed the subsequent optimization problem whose solution dictates the set

of products offered in each time period, this decision will once again be made without accounting

substitution effects between products.

Recommender Systems We also contribute to a broad literature that studies how to design rec-

ommender systems in digital platforms (for a comprehensive review, please refer to Ricci et al.

(2011)). The traditional recommender system literature often focuses on collaborative filtering; a

matrix factorization technique that helps infer a customer’s preference towards a product based on
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propensities of similar customers (Breese et al. 1998). Recently, researchers have started to consider

ensemble learning methods to estimate the click-through rates or purchase probabilities of each

customer on recommender platforms (Jahrer et al. 2010). Covington et al. (2016) detail YouTube’s

deep learning model that is used to learn each user’s click-through rate, which then feeds into the

videos recommendations that this user receives. Similar to the machine-learning-based approach

employed by Alibaba, YouTube’s recommender system relies more heavily on the estimation phase,

and then solves a simple optimization problem to determine the personalized set of recommended

videos.

Retailing operations. Lastly, our paper relates closely to the literature that studies assortment

(Caro and Gallien 2007, Gallego et al. 2016), inventory (Caro and Gallien 2010, Cachon et al. 2018),

and pricing (Ferreira et al. 2015, Papanastasiou and Savva 2016) problems in a retailing context.

Caro and Gallien (2010) provide early seminal work in this stream, designing and implementing

a system to help fashion retailer Zara distribute limited inventory across stores. Ferreira et al.

(2015) incorporate machine learning with optimization and work with online retailer Rue La La to

design a dynamic pricing system. Cachon et al. (2018) estimate the impact of inventory on sales

at car dealerships and propose an inventory policy to maximize variety. Golrezaei et al. (2014)

considers a dynamic assortment problem in which a retailer is allowed to personalize the assortment

of products offered to each arriving customer in response to just-revealed features and the current

inventory levels of each product.

2. Alibaba’s Retail Setting and Product Display Problem

In this section, we begin by detailing the retail context on Alibaba where we run our field exper-

iments. After introducing and describing this setting, we provide a general formulation of the

Alibaba Product Display Problem along with a high-level overview of the two approaches that ulti-

mately are implemented. The fundamental difference between these two approaches is the manner

in which customer demand is modeled and estimated. In the first approach, which is Alibaba’s

current practice, machine learning models are used to estimate customer buying patterns and then

a simple optimization problem is solved to choose which products to display. The second approach

captures customer buying patterns through the MNL choice model, whose estimated parameters

seed the assortment optimization problem that we then solve to guide product display decisions.

2.1. The Alibaba Platform

We begin by broadly discussing the two online marketplaces, Taobao.com and Tmall.com, that

Alibaba has fostered to help connect third-party sellers to consumers; these are the platforms where

we conduct our experiments. To help motivate our goal of maximizing revenue, we also describe

how Alibaba monetizes from these two marketplaces.
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Figure 1 Recommendation on Alibaba in the Public (left) and Private (right) Domains

Taobao.com is China’s largest peer-to-peer retailing platform for small businesses and individual

entrepreneurs. There are no commissions or listing fees on Taobao.com, and hence Alibaba mone-

tizes its services on Taobao.com by charging fees for advertisements and seller-side helping services,

such as forecasting and marketing tools. Tmall.com is China’s largest third-party business-to-

consumer platform for branded goods, such as Nike and Adidas. Sellers on Tmall.com are required

to pay a minimum deposit when opening a store and an annual commission fee to Alibaba based

on their revenue on the platform. This commission fee ranges from 0.5 to 5 percent depending on

a seller’s product category.1

With regard to Tmall.com, it is clear that Alibaba garners a larger profit when customers spend

more, since Alibaba collects a small fraction of each seller’s revenue for this marketplace. In the

case of Taobao.com, it is also generally believed that Alibaba’s profits are proportional to revenue

because sellers whose revenues are largest are also those who are likely to spend more on advertising.

Consequently, Alibaba primarily uses total revenue to assess the profitability of product display

algorithms, even though the company does not take commission fees from sellers on Taobao.com.

Hence throughout this paper, our objective is always to maximize the total revenue of each arriving

customer. For the sake of brevity, we hereafter refer to Taobao.com and Tmall.com jointly as “the

Alibaba platform.”

1 http://about.tmall.com/tmall/fee schedule
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2.2. The Alibaba Platform’s Product Display Problem

We begin with a high-level overview of product display systems on Alibaba before focusing on the

exact nature of the setting that we study. Throughout the paper, we use the terms “product display

system” and “product recommendation system” synonymously. Given that the Alibaba platform

essentially is a two-sided marketplace that matches customers with sellers, it is no surprise that

Alibaba devotes considerable attention to developing optimal product display algorithms to ensure

customers are shown products that are profitable. Broadly speaking, Alibaba’s recommendation

algorithms cater to two distinct settings, which we refer to as “the public domain” and “the

private domain.” Product recommendation algorithms applied in the public domain are applied

across the entire platform and hence are not seller-specific. For example, the Tmall marketplace

front page on Alibaba’s mobile application (as shown in the left panel of Figure 1) is considered

public domain. The product recommendation problem in this case is that of finding the optimal

set of products across all sellers on the platform for each arriving customer. On the other hand,

the private domain refers to pages that are specific to a particular seller. For example, the front

page of Hstyle, the largest online women’s apparel company on Alibaba’s platform, is considered

private domain (as shown in the right panel of Figure 1). Product recommendation algorithms on

the private domain only promote products specific to an individual seller. We reiterate that all

recommendation algorithms on Alibaba are highly personalized; if a customer lands on the front

page of Tmall twice in a single day, for example, it is possible the recommended products may

change as a result of this customer’s interactions (clicks, searches, purchases, etc. . . . ) within the

app between arrivals.

Our Alibaba Product Display Problem falls within the realm of private-domain product recom-

mendation algorithms. In particular, we focus on a product recommendation problem that results

when customers are given seller-specific discount coupons. Customers acquire these coupons by

clicking on a coupon icon that is presented at the top of each seller’s front page. Upon acquiring the

coupon, customers enter a coupon sub-page that contains six displayed products, each of which can

be purchased at a discount using the coupon. Alibaba chooses to display only six products since

this is the largest number of products that can be displayed within a single page on a mobile device.

Figure 2 shows how a customer progresses from a seller’s front page to the coupon sub-page to the

six displayed products. We note that this coupon feature is only available on Alibaba’s mobile app,

but this does not limit the scope of our experiments since the majority of Alibaba customers use

the mobile app to shop. As evidence, in fiscal year 2017, the mobile GMV (i.e., revenue generated

through mobile devices) was RMB 2,981 trillion (equivalent to USD 436 trillion), representing 79%

of total GMV through all channels.2

2 https://www.alibabagroup.com/en/news/press pdf/p170518.pdf
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Figure 2 The Process of Landing on Our Recommendation Page

Our field experiments focus exclusively on two competing approaches for finding the revenue-

maximizing set of six products to make available to each customer who visits a coupon sub-page,

as shown in Figure 2. As of March 2018 (just before our experiment), there were approximately

250 thousand sellers on the Alibaba platform who offered the mobile coupon discounts. On a

weekly basis, these sellers witness over 25 million unique page views on their coupon sub-pages

and generate over RMB 127 million (equivalent to USD 20 million) in GMV. Consequently, even

small improvements to this aspect of Alibaba’s recommendation systems can lead to huge gains in

profit.

To help formalize our Alibaba Product Display Problem, we let N = {1, . . . , n} be the universe

of products that a particular seller potentially could offer on the coupon sub-page. Sellers on the

Alibaba platform typically have between 100 to 2000 unique SKUs, all of which are in the same

product category and hence can be loosely considered substitutes. We let rj be the revenue of

product j ∈N , which represents the revenue garnered from the sale of a single unit of product j.

We let Pjt be the probability that customer t purchases product j. As indicated by its dependence

on t, this purchase probability term will be uniquely determined for each arriving customer. The

Alibaba Product Display Problem for customer t is given below:

max
S⊆N :|S|=6

∑
j∈S

rj ·Pjt. (Alibaba Product Display Problem)

In order to fully formulate the above problem, we must first choose a functional form for the

purchase probabilities Pjt. We consider two alternatives, both of which parameterize the purchase

probability term using a number of product and customer features. In both cases, the dependence
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of Pjt on these features is estimated from historical sales data: the estimation problem. These

estimates then seed the Alibaba Product Display Problem, for which an efficient algorithm must

be developed: the assortment problem. Along these lines, we assume throughout the paper that

an “approach” for the Alibaba Product Display Problem includes both a procedure for deriving

estimates of the purchase probabilities from historical sales data and an algorithm to find the

optimal six product displays once the purchase probabilities have been estimated. Further, when

discussing algorithms for “solving” the Alibaba Product Display Problem, we are strictly referring

to developing an algorithm to solve the assortment problem.

3. The Estimation Problem

In this section, we describe the two approaches used to estimate the purchase probabilities Pjt that

seed the Alibaba Product Display Problem. The first approach embeds hundreds of product and

customer features within sophisticated machine learning algorithms. This approach is Alibaba’s

current practice for solving the estimation problem. The second approach fits featurized MNL

models to the historical sales data using maximum likelihood estimation (MLE). While the latter

approach can be described in full detail, we are are not able to provide the exact details of the

machine-learning-based approach due to confidentiality concerns; however, we intend to provide

enough details so that the advantages and drawbacks of this approach can be well understood.

Further, at the conclusion of this section, we provide a case study comparing the fitting accuracy

of an off-the-shelf machine learning algorithms with that of the MNL model using historical sales

data from the top ten sellers (based on traffic) from Tmall.com. The intent of this case study is to

show that it is not difficult to develop machine-learninh-based estimation schemes that outperform

the MNL model in terms of fitting accuracy. However the essential question that we ultimately

investigate in Section 6, where the results of our large-scale field experiment are revealed, is whether

these gains in fitting accuracy lead to more profitable six-product offerings on the coupon sub-pages.

Available sales data and product/customer features. Before diving into the details of either

approach, we first discuss the makeup of the available historical sales data used to fit the machine

learning algorithms and the MNL model. This training data is composed of historical sales infor-

mation from τ past customers, each of whom is shown six products. For each arriving customer t,

we let St ⊆N be the six displayed products, which the system stores as vectors of representative

feature values. The product features that are used include high-dimensional static features, such

as a one-hot encoding representation of product ID and seller ID, in addition to low-dimensional

static features, such as product category. Dynamic product features, which are updated constantly

based on customer interactions, are also included in the feature set. Examples of dynamic product

features include the number of reviews and price, which are refreshed every second. Finally, we
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note that product features are also engineered from product descriptions and pictures. For exam-

ple, there is a feature associated with the image quality of each product’s icon that is displayed

to customers within the app. The system also records an associated feature vector that describes

the characteristics of the customer at hand. The customer-specific features include demographic

information, such as age, gender, and registration time. Other customer features are descriptive

of past behaviors within the app, e.g., the number of products viewed, collected, purchased, and

returned in the past.3

Beyond the classic product/customer features described above, the system also records dynami-

cally updated joint features of each customer and product pair. These joint features can be thought

of as scores that represent estimates of the extent to which the particular product will appeal

to the particular customer. These scores are computed by a large collaborative filtering system

(Linden et al. 2003), which uses past purchase and click data from the given customer and other

customers who are deemed to have similar preferences. Since these collaborative filtering scores

depend on customer behavior within the app, they are dynamically updated so that they reflect

current trends. In total, hundreds of features – numerical and categorical, static and dynamic –

are available to be used within the estimation schemes.

3.1. Fitting Machine Learning Models

In what follows, we formalize the machine-learning-based approach for estimating the purchase

probabilities Pjt. Each observation within the training data set can be described as a triple

(Xjt,Cjt,Zjt) corresponding to a specific arriving customer t and displayed product j ∈ St. The

vector Xjt gives the features associated with the particular observation, while the output or tar-

get variables Cjt,Zjt ∈ {0,1} denote whether customer t clicked or purchased displayed product j

respectively. We set Cjt = 1 if customer t clicked on product j and Cjt = 0 otherwise. Similarly,

we set Zjt = 1 if customer t purchased product j and Zjt = 0 otherwise. Note that we must have

Zjt ≤Cjt since a product cannot be purchased unless it is clicked. In total, the training data con-

sists of T = 6τ (since each customer is shown six products) observations, which we represent as

PurchaseHistoryML = {(Xjt,Cjt,Zjt) : t = 1, . . . , T, j ∈ St}. We note that for this approach, each

observation (Xjt,Cjt,Zjt) ∈ PurchaseHistoryML does not encode the set of products that were

offered alongside product j to customer t. On the one hand, this is the classic setup of supervised

learning problems, which makes the task of estimating customer click and purchase probabili-

ties amenable to the full suite of powerful machine learning tools. However, the drawback of this

approach is that the estimates of the purchase probabilities are independent of the assortment of

products displayed and hence do not account for customer substitution behaviors. Consequently,

3 ”Collecting” a product on Alibaba is analogous to adding a product to a wish list on Amazon.
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the efficacy of the resulting Alibaba Product Display Problem in identifying profitable six-product

displays could suffer due to the fact that it does not account for key operational trade-offs.

The training data is used to solve two independent estimation problems, which are then combined

to form estimates of the purchase probabilities Pjt. First, the training data is used to derive

estimates of the click probabilities P(Cjt = 1), which represent the probability that customer t will

click on product j. To do so, various machine learning algorithms are employed, which are finely

tuned to match the past click history described in PurchaseHistoryML. We let the output of this

estimation procedure be a function f(Xjt), which maps customer and product features to estimates

of click probabilities. Along the same lines, Alibaba tries a similar collection of machine learning

approaches to uncover a function g(Xjt), which produces accurate estimates of the conditional

purchase probabilities P(Zjt = 1|Cjt = 1). Ultimately, Alibaba uses Pjt(Xjt) = f(Xjt) · g(Xjt) as

their estimates of the purchase probabilities, where we now explicitly express this probability as a

function of the feature vector Xjt. It is important to note that in this setting, the estimates of the

purchase probabilities are independent of the displayed assortment.

The current system implements various models and ensembles their predictions together for both

estimation problems. These models include regularized logistic regression (Ravikumar et al. 2010),

gradient-boosted decision trees (Friedman 2002), and deep learning (LeCun et al. 2015). As of the

time our system is deployed (i.e., March 2018), regularized logistic regression and gradient-boosted

decision trees contribute the most to the final prediction outcome due to their superior prediction

performance compared to that of deep neural networks. The implementation of these machine

learning algorithms is conducted offline using historical purchases from a seven-day rolling window.

For example, the model on March 8, 2018, will be trained on observations from March 1, 2018, to

March 7, 2018, and the model on March 9, 2018, will be trained on data from March 2, 2018, to

March 8, 2018. On average, we have between 20 million and 30 million observations within these

seven-day windows. It takes approximately 30 minutes to train the machine learning model and

upload the result to the parameter cache server to speed up inference.

3.2. Fitting The MNL Model

In this section, we formally introduce the MNL choice model and describe how its underlying

parameters are fit to historical sales data. The fitted parameters of the underlying MNL model are

then used to derive estimates of the purchase probabilities that seed the Alibaba Product Display

Problem. In contrast to the machine-learning-based approach, the MNL model is simple, but it was

created with the intention to capture customer purchasing behavior and, more specifically, substi-

tution patterns. Consequently, while the estimates produced from the fitted MNL models might

not be as accurate as those produced by the machine learning based approach, the resulting Alibaba

Product Display Problem is more sophisticated due to the fact that the purchase probabilities will

be a function of the displayed assortment of products.
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The MNL choice model. We begin with a description of the classic MNL choice model. The

MNL choice model falls under the general RUM framework, in which arriving customers associate

random utilities with the offered products and are then assumed to purchase the product with

the highest positive utility. Under the MNL choice model, the random utility Ujt that customer

t associates with product j is written as the sum of a deterministic component Vjt and an i.i.d.

Gumbel random variable denoted as εjt. More formally, we have that

Ujt = Vjt + εjt.

In order to incorporate product and customer features within the above utility function, one can

write the deterministic component of the utility as Vjt = β′Xjt, where the vector Xjt denotes the

values of the relevant features for customer t and product j. In this setting, we featurize the utility

functions using only the top 25 product and customer features based on feature importance scores

that the machine learning estimation algorithms return.

With this notation in hand, we can present the explicit expression for the purchase probabilities

under the MNL choice model. Again, we index the universe of n products by the set N = {1, . . . , n}.

In addition to these n products, we assume there is an ever-present dummy product with index 0,

which is included in each assortment that the retailer potentially could offer. This product is often

labeled the no-purchase option and it represents the option for the customer to leave the store

without making a purchase. Throughout the paper we assume that V0t = 0, which is an assumption

that can be made without loss of generality. Under the MNL model, if the retailer offers assortment

St ⊆N to customer t, then the probability that product j ∈ St is purchased is given by

Pjt(St,Xt) =
eβ
′Xjt

1 +
∑

i∈S e
β′Xit

,

where Xt = {Xjt : j ∈ St} gives the features associated with each of the offered products. In this

setting, the purchase probabilities depend explicitly on both the product/customer features and

the set of displayed products. When we move to the assortment problem, the coefficients β will

be fixed and we will define vjt = eβ
′Xjt to denote the preference weight that customer t associates

with product j.

Fitting the MNL choice model. We use maximum likelihood estimation (MLE) to derive esti-

mates for the β coefficients. We formulate the likelihood using historical sales data from τ cus-

tomers. More specifically, we represent the past purchasing history of the τ customers as the set

PurchaseHistoryMNL = {(St,Xt, zt) : t= 1, . . . , τ}, where we note again that St denotes the set of

six displayed products and Xt = {Xjt : j ∈ St} gives their associated features. The term zt gives the

product that was purchased, where we set zt = 0 if the customer did not purchase any of the offered
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products. For customers who purchased multiple products, we treat each purchase independently

and hence create a separate data point for each unique product that is purchased. To illustrate how

we handle events where an arriving customer makes multiple purchases, we consider a simplified,

featureless setting where customer t is offered products St = {1,2,3} and purchases products 1 and

2. In this case, our purchase history will contain the data points ({1,2,3},1) and ({1,2,3},2).

With this notation in place, we formulate the MLE problem of interest below

max
β
LL(β |PurchaseHistoryMNL) (1)

where

LL(β |PurchaseHistoryMNL) =
τ∑
t=1

β′Xzt,t− log(1 +
∑
j∈St

eβ
′Xj,t).

In problem (1), the objective is the log-likelihood written as a function of the purchasing history

of the τ customers. In the above MLE problem, we seek the β coefficients, which maximize this

log-likelihood function. It is well known (see McFadden (1974)) that the objective function in (1) is

concave in the β coefficient. Hence, when τ is relatively small, off-the-shelf nonlinear optimization

solvers, such as MATLAB’s fmnincon, are sufficient for solving the MLE problem. For example,

Vulcano et al. (2012) and Topaloglu and Simsek (2017) employ this approach to estimate the

parameters of an MNL choice model in test cases where τ never exceeds 50,000.

In our setting, we continuously resolve (1) on a rolling week-long basis similar to the machine-

learning-based approach, and hence we have τ ≈ 20 − 30 million. Further, there is an inherent

data censorship issue that results due to no-purchase events, further complicating the estimation

process. Recall that when a no-purchase event is observed, we have zt = 0. Unfortunately, it is

impossible to know if the arriving customer did not make a purchase because she was not satisfied

with the set of offered products or because she never intended to make a purchase in the first place.

We refer to customers of this latter type as “browsers.” The former scenario provides a signal

of how the customer valued the set of offered products, while data from the latter case should

be discarded. Consequently, appropriately differentiating between these two cases is critical for

deriving accurate estimates of the β values. In our setting, approximately 95% of the observations

correspond to no-purchase events, and hence the manner in which this censorship issue is dealt

with has nontrivial effects on the accuracy of the estimates produced.

This censorship issue is not new when it comes to solving the estimation problem for various

choice models. For example, van Ryzin et al. (2010) and van Ryzin and Vulcano (2017) develop

EM algorithms to deal with the brick-and-mortar version of this censorship, in which time periods

that have no observed sales are either the result of a no-purchase event or simply the fact that

no customer arrived at the store. In this case, an accurate distinction between these two cases
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is essential for getting an accurate estimate of the probability that a customer arrives in each

time period. In theory, these EM-based approaches could be applied in our setting; however, a

practical implementation of these algorithms is nearly impossible due to the scale of our problem. In

particular, these EM-based approaches rely critically on an efficient way to solve the MLE problem

when the censored data is revealed. Further, since EM algorithms are iterative approaches, the

resulting “uncensored” or full-information MLE must be solved repeatedly, which is not tractable

for the scale of problem we consider.

The above discussion summarizes the two intertwined big-data and censorship difficulties that

must be overcome in order to solve problem (1) in our setting. In what follows, we provide a

heuristic approach for handling these issues, which we show performs quite well in practice. The

steps of this approach unfold as follows:

Step 1: Randomly sample 10% of the no-purchase events.

Step 2: Solve problem (1) using the randomly sampled no-purchase events in addition to all data

points (St,Xt, zt), such that zt 6= 0.

Step 3: Scale down each of the estimated β values by a constant δ.

In what follows, we motivate and further explain the implementation details regarding the three

steps outlined above. In the first step, we downsample the no-purchase events so problem (1) is

reasonably tractable. By discarding 90% of the no-purchase events, we implicitly assume that 90%

of customers who do not make a purchase are browsers, which likely is an overestimate of this

percentage that we adjust for in step 3. In step 2, we formulate and solve our MLE problem. Even

after we downsample the no-purchase events, the optimization problem at hand is still not amenable

to commercial nonlinear solvers. Consequently, we solve problem (1) using TensorFlow, which uses

a highly parallelized implementation of stochastic gradient ascent. Even with this sophisticated

machinery, at least an hour is still required to solve problem (1). Finally, in step 3 we adjust the

preference weights of each product to account for the fact that our MNL model is likely fit using

a likelihood function that has too few no-purchase events and hence we have overestimated the

preference weights of each product. Through extensive out-of-sample testing in which we implement

this choice-modeling-based approach for different δ values, we find that setting δ= 2000 is the best

scaling coefficient.4

4 In our out-of-sample tests, we try δ ∈ {0,500,1000,1500,2000}. The MNL-choice-model-based approach is substan-
tially better than the ML approach for all δ. The largest performance difference in terms of average revenue per visit
between MNL approaches with different values of δ is less than 5%
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3.3. Estimation Case Study: Machine Learning vs. MNL

In this section, we present a case study in which we fit both MNL and machine learning models to

historical sales data generated in April 2018 from the coupon sub-pages of the ten most popular

sellers on Tmall.com. Due to the fact that we only use sales data from ten sellers to fit our models,

the scale of the estimation problems we consider is much smaller than the one encountered within

the recommender systems we actually implement on Alibaba. Further, since the exact nature of the

machine learning methods used by Alibaba must remain confidential, we are not able to replicate

their methods or results exactly in this case study. Instead, we fit machine learning models inspired

by the current practice at Alibaba in the sense that both estimation schemes rely on gradient

boosted decision trees to estimate the click and purchase probabilities. It is important to note

that the intent of this case study is not to perfectly replicate the estimation problem faced by

Alibaba, but instead to show that it is relatively straightforward to fit machine learning models

that outperform the MNL fits in terms of predictions accuracy. In this way, we shed light on the

following fundamental issue that sits at the core of our research: Machine learning methods are

powerful tools for prediction and are often more accurate than MNL models; however, when these

predictions seed subsequent optimization problems whose solutions guide key operational decisions,

it is not guaranteed that higher prediction accuracy will lead to more profitable decisions.

Top ten seller statistics. Alibaba has provided us with two weeks of historical sales data from

the ten sellers on Tmall.com that experienced the largest volume of traffic in April 2018. We note

that this two week time period does not overlap with the time horizon of our field experiments.

Table 1 provides an extensive summary of the available sales data for each seller. Further, for each

arriving customer t and offered product t ∈ St, the feature vector Xjt gives the values of the 25

features with the highest importance scores according to the machine learning approaches that

have been utilized in the past. Among these top 25 features are product-specific features such as

price, the number of good reviews, the number of times the product has been clicked, and the

image quality of the associated picture displayed to each customer. In addition, we use customer-

specific features such as the given customer’s spending and total number of products added to the

shopping cart both in the last week and in the last month. Beyond these rather straightforward

product/customer features, we also have access to joint features that are specific to each customer

and product pair. For example, one such joint feature is the collaborative filtering score signifying

the extent to which the particular product will appeal towards the particular customer. Once again,

due to confidentiality agreements, we cannot disclose the complete list of all 25 features.

Accuracy metrics and models tested. For each seller, we randomly select 75% of its sales data to

be used for fitting the models and hold-out the remaining 25% of the data to test the accuracy of

these models. After splitting the data in this way, we aggregate all of the training data from each
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Table 1 Key seller statistics

Seller Product Category # products # clicks # purchases # customers conversion %

1 Electronics 169 8,338 2,045 41,765 4.88
2 Women’s Apparel 118 17,792 2,163 139,853 1.49
3 Men’s Apparel 1,047 11,508 1,956 213,678 0.88
4 Perfume 103 32,535 8,478 131,822 6.16
5 Diapers 132 10,296 2,979 90,467 3.01
6 Furniture 49 4,949 1,937 33,579 5.75
7 Cooking Appliances 38 3,376 2,180 37,925 5.75
8 Cooking Appliances 82 4,220 1,448 40,108 3.59
9 Women’s Apparel 501 7,267 2,127 63,466 3.23
10 Bed Linens 115 6,975 1,767 39,494 4.43

Notes. This table reports the key statistics, including categories, number of products and conversion rates, for the

top ten sellers that we use for this case study.

seller into a single training set. This set-up most closely resembles the current practice at Alibaba,

where the machine learning models are fit to sales data aggregated across all sellers. Once the MNL

and machine learning models have been trained, we measure the accuracy of each fitted model

using two metrics that are computed using the sales data exclusively from each seller’s testing set

restricted to customers who purchase exactly one item. In computing these accuracy metrics, we

ignore customers who make multiple purchases, which has a negligible effect on our results since

multiple products were purchased in approximately 0.01% of customer visits. That said, we defer

explanations for why no-purchase events are ignored until the two accuracy metrics are formally

defined, since this understanding will help elucidate our choice. The series of steps described above

– 75/25 train/test split, fitting the models, computing the accuracy metrics on the test data set –

make up what we refer to as a single trial. We eventually present the average accuracy metrics for

each seller over 10 trials.

It is important to note that one potential metric that could be used to assess fitting accu-

racy is the log-likelihood on a hold-out sample of sales data. This metric is often referred to as

the out-of-sample log-likelihood, and it has been a popular metric for assessing the accuracy of

fitted customer choice models in the revenue management literature (see Topaloglu and Simsek

(2017), for example). Unfortunately, comparing the out-of-sample log-likelihoods for the MNL

and machine-learning-based approaches would not be an apples-to-apples comparison because the

machine learning estimation procedures make predictions at the customer-product level, while the

MNL choice model makes predictions at the offer-set level. Consequently, we instead use the fol-

lowing two metrics, which assess how the well the fitted models are able to predict the product

that the arriving customer ultimately purchased.

The first metric is the classification accuracy, which is a measure of how frequently we predict

correctly the item that is purchased. For each model, this metric is the fraction of customers in the

hold-out data set for which the fitted model’s predicted purchase probability for the product that
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was purchased is the largest among all displayed options, excluding the no-purchase option. The

reason we ignore the latter option in computing this metric is similar to why we ignore sales data

points in the test set that correspond to customers who select the no-purchase option. Essentially,

since only 1%-6% of customers made a purchase (see conversion rates in Table 1), all fitted choice

models overwhelmingly predict that each customer will select the no-purchase option. As a result,

unless the no-purchase option is ignored, there will be little differentiation between the classification

accuracy of the fitted models.

The second accuracy metric we compute is referred to as the average rank. For this purpose, we

first obtain the purchase probabilities of each displayed option (again, excluding the no-purchase

option) under each of the fitted models. Then, for each customer t, we sort the displayed options

in order of decreasing purchase probabilities and subsequently find the rank of the purchased

product in this sorted list. Our convention is that the product with the largest predicted purchase

probability is assigned a rank of 1, the product with the second largest is ranked 2, so on and so

forth. With these definitions, the average rank metric is the average rank of the purchased product

over all customers in the test set who purchase exactly one product.

Given that we have access to hundreds of thousands of historical data points, even in this

simplified case study, it is no simple task to produce accurate estimates of the purchase probabilities

in an efficient manner, whether it be by fitting MNL or machine learning models. As a result, the

descriptions of the two fitted models below give references to Appendices that provide our exact

implementation.

1. The MNL choice model (MNL): We fit this model by solving problem (1) via Tensorflow

implementation, which is presented in Appendix C.1. We find that in this simplified setting

with ten sellers, downsampling the no-purchase events has a negligible effect on the accuracy

of the fitted models.

2. The machine learning models (Trees): We use gradient boosted classification trees to

estimate the click probabilities P(Cjt = 1) and the conditional purchase probabilities P(Zjt =

1|Cjt = 1). More specifically, we use Catboost (Prokhorenkova et al. 2018), a novel gradient

boosting toolkit. The full details of our implementation are given in Appendix C.2.

Results The results for each seller with regards to the two accuracy metrics are presented in

Table 2. The first two columns identify the seller number and the fitted model. Columns three and

five specify the mean classification accuracy and average rank respectively over 20 trials. Columns

four and six correspond to the percentage improvement in performance of the machine learning

models over the standard MNL fits. For all ten sellers and both accuracy metrics, the machine

learning fits yield statistically significant (p= 0.05) improvements over the MNL fits.
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Table 2 Predictive performance of the fitted models.

Fitted Classification Improvement Avg. Improvement
Seller # Model Accuracy over MNL Rank over MNL

1 MNL 0.42 - 1.96 -
1 Trees 0.85 102.38% 1.20 63.33%

2 MNL 0.53 - 2.01 -
2 Trees 0.60 13.21% 1.64 22.56

3 MNL 0.61 - 1.83 -
3 Trees 0.73 19.67% 1.52 20.39%

4 MNL 0.76 - 1.49 -
4 Trees 0.83 9.21% 1.30 14.62%

5 MNL 0.60 - 1.92 -
5 Trees 0.67 11.66% 1.65 16.36%

6 MNL 0.81 - 1.30 -
6 Trees 0.86 6.17% 1.20 8.33%

7 MNL 0.94 - 1.08 -
7 Trees 0.96 2.13% 1.06 1.89%

8 MNL 0.83 - 1.27 -
8 Trees 0.91 9.64% 1.16 9.48%

9 MNL 0.59 - 1.80 -
9 Trees 0.80 35.59% 1.32 36.36%

10 MNL 0.84 - 1.29 -
10 Trees 0.86 2.38% 1.22 5.73%

Notes. This table shows the out-of-sample average classification accuracy and average rank of Machine Learning

and MNL models over each of the top ten sellers.

The result in Table 2 clearly show that a simple out-of-the-box machine learning method with

minimal parameter tuning is able to outperform the MNL model with regards to both accuracy

metrics. Of course, these results are not an exact replica of the accuracy we observe in the experi-

mental setting, however they serve as strong empirical support of the notion that machine learning

models have the potential to outperform simpler models in terms of prediction accuracy. How-

ever, as we go on to show in our field experiments, this improvement in fitting accuracy does not

guarantee that more profitable assortments will be displayed to each arriving customer. In the

next section, we detail the subsequent assortment problems that result after the models have been

estimated and show why this might be the case.

4. The Assortment Problem

In this section, we consider the assortment problem that results when the estimates of the pur-

chase probabilities from the fitted MNL and machine learning models are used to seed the Alibaba

Product Display Problem. In the case of the machine learning approach, a simple greedy algorithm

is all that is needed to choose the optimal six product displays. In contrast, when the purchase

probabilities are dictated by a fitted MNL model, the resulting assortment problem is a cardinality-

constrained assortment problem under the MNL choice model. As previously mentioned, a handful

of past approaches for solving cardinality-constrained assortment problems exist under the MNL

choice model. Since the problem must be solved in an online fashion within a threshold time of 50
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milliseconds, we elect to employ a modified version of the combinatorial algorithm of Rusmevichien-

tong et al. (2010), whose running time we are able to improve by a factor of O(logn). The details

of this improved implementation are presented in Appendix A.

4.1. The Machine Learning Fits

After fitting the machine learning models, we are able to derive estimates Pjt(Xjt) of the purchase

probabilities for any customer t and product j. Upon the arrival of customer t, the system will

first find all products with non-zero inventory and form the set N from this collection of available

products. In this setting, it turns out that the Alibaba Product Display Problem can be solved with

a straightforward greedy algorithm that first sorts the products in descending order of rj ·Pjt(Xjt)

and then selects the top six products in this ordering. This algorithm is trivially optimal because

the purchase probabilities do not depend on the set of offered products. Consequently, the problem

of choosing the optimal six-product display simply becomes a cardinality-constrained knapsack

problem, for which it is straightforward to see that the aforementioned simple greedy algorithm is

optimal. Since the six-product displays must be generated in an online fashion for each arriving

customer, the simplicity of this optimal greedy approach is to be valued. However, as we go on to

demonstrate in Section 6, what is gained in efficiency is lost when sub-optimal product displays are

chosen due to the fact that the greedy algorithm chooses to display a particular product without

considering how this choice will affect the appeal of the other displayed products.

As discussed at the beginning of this section, another drawback of the machine learning approach

is that the estimates of the purchase probabilities should essentially be treated as black-boxes, since

the fitted models do not provide a closed form relationships between the features and the predicted

purchase probabilities. This is in contrast to the fitted MNL models, for which we assume the

deterministic component of the random utility Vjt is a linear function of each feature. Consequently,

under the fitted machine learning models, it is not possible to formulate an an optimal pricing

problem, which could perhaps be one key operational lever for the Alibaba or other retailers to

increase revenue.

4.2. The MNL Fits

Next, we consider the cardinality-constrained assortment optimization problem that results when

the purchase probabilities Pjt in the Alibaba Product Display Problem are dictated by our fitted

MNL choice model. Again, we consider a setting with n products indexed by the set N = {1, . . . , n},

where the revenue of product j ∈N is given by rj. For each customer who arrives, we compute

the customer-specific preference weights vjt = β∗Xjt, where β∗ is the optimal solution to problem

(1), after being scaled down by δ. We encode our assortment decision through the binary vector
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y ∈ {0,1}n, where we set yj = 1 if product j is offered and yj = 0 otherwise. The expected revenue

of displaying assortment y is denoted as

R(y) =

∑
j∈N rjvjtyj

1 +
∑

i∈N vit
.

Finally, we denote the set of feasible assortments as F = {y ∈ {0,1}n :
∑n

j=1 yj = 6}. Note that

the cardinality constraint must be satisfied with equality in our setting, since for each arriving

customer we must always display six products. The cardinality-constrained assortment problem of

interest can be stated as follows:

ZOPT = max
y∈F

R(y). (MNL-Card)

The first optimal polynomial-time algorithm for problem MNL-Card is due to Rusmevichientong

et al. (2010). They provide a purely combinatorial approach whose run time is O(n2 logn). In

Appendix A, we give a novel implementation of this algorithm, which improves upon this previous

run time by a factor of O(logn).

In Appendix B, we consider additional operational levers that could be used by Alibaba to

increase revenue in this discount coupon setting. In particular, we consider variations of Alibaba

Product Display Problem where, on top of product assortments, Alibaba can also control the

price or the icon size of each displayed product on the coupon sub-page. We detail how these

two constrained versions of the assortment problem under the MNL model can either be solved

optimally or near-optimally. For the problem that considers the icon size of each displayed product,

we develop a novel approximation scheme.

5. Experiment Design and Data

In this section, we discuss the design of our field experiment. We then provide summary statistics of

the raw data as well as the randomization check to demonstrate that our experiment is rigorously

conducted.

5.1. Experiment Design

We finished implementing and testing our MNL-choice-model-based approach by the end of Febru-

ary 2018. Recall that the machine-learning-based approach is Alibaba’s current practice and hence

there was no work to be done in terms of implementing this benchmark approach. Our experiment

officially started on March 12, 2018. The field experiment lasted for two weeks, but due to security

reasons we can only report the results from the first week (i.e., March 12, 2018, to March 18,

2018).5

Throughout the experiment, we test the following three approaches.

5 The number of customers aggregated across two weeks has surpassed the allowed number of customers to use in
a research paper by the company. This is why we focus on the first week of the data. However, our results do not
change qualitatively if we use the second week of data.
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1. The MNL-choice-model-based approach (MNL approach): Customers assigned to this

approach see six product displays from the MNL-choice-model-based approach. Similar to the

case study presented in Section 3.3, this approach uses the top 25 features based on importance

scores in its featurization of the MNL utility functions.

2. The same-feature-ML-based approach (SF-ML approach): Customers assigned to this

approach see six product displays from the machine-learning-based approach, in which the

features used within the machine learning estimation algorithms are the same set of 25 top

features.

3. The all-feature-ML-based approach (AF-ML approach): Customers assigned to this

approach see six product displays from the machine-learning-based approach described in

Section 4.1, in which hundreds of features are used within the machine learning estimation

algorithms. Before our work, this was the current product recommendation system for choosing

the six-product displays on the coupon sub-pages.

During the experimental week beginning on March 12, 2018, each customer who arrives at the

coupon sub-pages for any participating seller is randomly assigned one of the three approaches

based on a unique hash number derived from the given customer’s ID and an experiment ID.6 Each

customer is only assigned to one of the three product recommendation approaches described above

regardless of how many times she visits the coupon sub-page.

Given this experimental set-up, we primarily focus on the comparison between the MNL-based

approach and the machine-learning-based approach that use the top 25 features. However, as noted

in Section 1, we also implemented a full-feature version of our MNL-based approach in September

2018 and compare it with the full-feature machine-learning-based approach in a five-day-long field

experiment. The results of this field experiment are presented in Appendix D. We remind the

reader that since Alibaba did not provide us with visit-level data for the new experiment, we were

not able to explore the accuracy of the full-feature MNL model nor can we conduct heterogeneous

treatment analysis.

5.2. Data and Randomization Check

Over the week of our experiment, we observe 27 million customer arrivals from 14 million unique

customers. From these 14 million unique customers, we randomly select 5 million to be randomly

assigned to one of our three approaches. (The remaining 9 million customers were participants in

6 To prevent our experiments from colliding with existing experiments on the Alibaba platform, we use a randomization
procedure with hashing. In particular, during the experimental week, each arrival customer ID is concatenated with
a unique number that is representative of our current experiment. The resulting concatenated number is then hashed
into a byte stream using the MD5 message-digest algorithm (Rivest 1992). The first six bytes of this byte stream
are extracted and then divided by the largest six-digit hex number to get a floating point. We then assign customers
randomly based on this unique floating point value.
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Table 3 Summary Statistics

MNL SF-ML AF-ML Min Pairwise P-value

Panel A: Randomization Check
Seller Monthly GMV 1.7 million 1.7 million 1.7 million > 0.3

Seller Number of Products 2187 2186 2189 > 0.2
Seller Registration Year 2013 2013 2013 > 0.4

Customer Registration Year 2012 2012 2012 > 0.3
Customer Gender (Male =1) 0.26 0.26 0.26 > 0.5

Customer Age 30.2 30.2 30.3 > 0.3

Panel B: Summary Statistics
Number of Page Views 3,469,129 3,484,555 3,467,965

Number of Products Clicked 421,896 368,987 423,046
Number of Products Purchased 86,585 70,699 90,033

GMV (RMB) 18 million 14 million 17.8 million

Notes. Panel A reports the average monthly GMV, average number of products available to the seller, average

seller registration year, and average customer registration year, customer gender breakdown and average age for

all sellers and customers assigned to each approach (i.e., MNL, SF-ML and AF-ML approach). T-tests between

the differences in averages of the three approaches have p− value greater than 0.05 for all pair-wise comparisons.

Panel B reports the total number of page views, number of products clicked/purchased and total GMV in each

approach.

other parallel experiments.) In particular, 1,879,903 customers are assigned to the MNL approach,

1,879,598 customers are assigned to the SF-ML approach, and 1,876,940 customers are assigned

to the AF-ML approach. These 5 million unique customers generate 10 million arrivals to coupon

sub-pages during the week of our experiment. (Given that our experiment relied on the unique

experiment ID in hashing, there were no other major experiments during this time that collided

with our experiment.)

Next, we present customer and seller information from the three experiment groups to confirm

that the customers and sellers assigned to each of the three approaches are comparable in terms

of demographics, spending habits, and revenue. Panel A of Table 3 shows the averages of the total

GMV in the month prior to the starting date of the experiment; the number of active products

on March 12, 2018; registration year; customer age; customer gender breakdown; and customer

registration year for each of the three approaches. It is clear that customers and sellers assigned to

each of the three approaches have statistically indistinguishable metrics: the minimum p-value over

all t-tests is greater than 0.2. The results of our randomization checks suggest that any difference

between customers under these three approaches after the experiment was implemented should

be attributed to differences in the estimation and assortment algorithms implemented within each

approach.

Panel B of Table 3 shows the aggregate impressions made by the arriving customers. More

specifically, this table shows that the customers in our experiment generated 3,469,129, 3,484,555,

and 3,467,965 page views under the MNL, SF-ML, and AF-ML approaches respectively. This
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means that on average, each customer viewed approximately 1.85 coupon sub-pages during the

week of our experiment. Customers assigned to the MNL approach clicked on 421,896 displayed

products, while customers assigned to the SF-ML and AF-ML approaches clicked on 368,987 and

423,046 displayed products respectively. Further, customers assigned to the MNL, SF-ML, and AF-

ML approaches respectively purchased 86,585, 70,699, and 90,033 products, leading to RMB 18,

14, and 17.8 million (equivalent to USD 2.63, 2.05 and 2.60 million) respectively. These preliminary

results suggest that on average, customers assigned to the MNL approach generated more revenue

compared to those assigned to the SF-ML and AF-ML approaches.

6. Main Results

In this section, we present the results of our field experiment. We begin by detailing the financial

performance of the three approaches. The metric Alibaba uses internally to assess the profitability

of product recommendation systems is GMV (used synonymously with revenue throughout) per

customer visit, and hence we also adopt this metric as our means of judging the efficacy of the three

approaches. After presenting these results, we dig deeper into the data in an attempt to better

understand why some approaches perform better than others. First, we present the accuracy of

the purchase probability estimates under each approach. One would expect the approaches with

more accurate estimation schemes to perform better, but this might not always be the case. We

then present the average price of the products purchased under each approach; we find that the

MNL approach recommends six-product displays that lead to more sales of profitable products.

Lastly, we document how the performance differences among approaches may change with respect

to differences in seller characteristics. In presenting these results, the unit of analysis is the customer

t who visited the coupon sub-page of seller k.

6.1. Financial Performance

We begin by presenting the GMV per customer visit generated by each of the three approaches.

We define RevenuePerVisitkt to be the revenue generated from customer t’s visit to the coupon

sub-page of seller k. Panel A of Table 4 shows the revenue per visit of the MNL, SF-ML, and

AF-ML approaches during our experimental period. The first row of Panel A shows that the MNL,

SF-ML, and AF-ML approaches generate RMB 5.17, 4.04, and 5.16 per customer visit respectively

(equivalent to USD 0.768, 0.600, and 0.767). The revenue per visit under the MNL approach is

RMB 1.13, or 28% larger than the revenue per visit under the SF-ML approach. Both the t-test

and the nonparametric Wilcoxon test show that this difference is highly significant (all p-values

< 0.0001).

While the MNL approach significantly outperforms the SF-ML approach, its financial perfor-

mance surprisingly is also on par with that of the AF-ML approach, which uses hundreds of features
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Table 4 Model Financial Performance

Panel A: Summary Statistics of Financial Performance

MNL SF-ML MNL AF-ML
RevenuePerVisit (RMB) 5.17 4.04 5.17 5.16
Difference (All p-values) 1.13 (< 0.0001) 0.01 (0.8346)
Relative Improvement 28.0% 0.2%

Observations 3,469,129 3,484,555 3,469,129 3,467,965

Panel B: OLS Regression Results on Model Financial Performance

Dependent variable:

Revenue Revenue

(1) (2)

SF-ML -1.126∗∗∗∗ -0.987∗∗∗∗

(0.094) (0.073)
AF-ML -0.015 0.032

(0.110) (0.077)

Customer Controls No Yes
Seller Fixed Effect No Yes
Date Fixed Effect No Yes

Observations 10,421,649 10,421,649

Notes. ∗p < 0.10;∗ ∗ p < 0.05; ∗ ∗ ∗p < 0.01; ∗ ∗ ∗ ∗ p < 0.001. Standard errors are robust and clustered at the

customer level. Panel A reports the average financial performance, in terms of revenue per customer visit, across

different algorithms during our experimental period (March 12, 2018 - March 18, 2018). Panel B reports the results

from OLS regression that estimate the difference between different models’ revenue per customer visit. Column

(1) of Panel B does not control for any additional control variables, while Column (2) of Panel B controls for

customer characteristics, seller fixed effects and date fixed effects.

within its estimation scheme compared to the 25 features used within the MNL approach. Both the

t-test and the nonparametric Wilcoxon test show that the financial performance difference with

respect to revenue generated per visit between these two approaches is not statistically significant

(all p-values > 0.8346). This result shows the potential of the MNL approach: using only a small

fraction of the features used by the AF-ML approach, our MNL approach can generate similar

revenue per customer visit. This result leads us to believe that we would observe a sizable improve-

ment if we extended the MNL approach to include all features. Alibaba has indeed indicated to us

that they would like to prioritize implementing the MNL-based approach using all of their available

features.

Next, we test the differences in financial performance with respect to revenue generated per visit

between the three approaches, controlling for specific customer and seller characteristics that may

affect customer spending behavior. Since this is a field experiment with proper randomization,

control variables are added only to make the estimators more efficient. Specifically, we use the

following OLS regression specification:

RevenuePerVisitkt = α1
0 +α1

1Approacht +Xt +Xk +Dt + εkt. (2)
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In the expression above, Approacht is a categorical variable indicating the approach to which

customer t has been assigned. The terms Xt and Xk represent customer- and seller-specific features,

including customer age, customer gender, customer registration year, the seller’s GMV from the

previous month, the seller’s registration year, the category of products sold by the seller, and

the number of products the particular seller offers. The term Dt gives a date-specific fixed effect.

We report the robust standard errors clustered at the customer level in this analysis as well as

all subsequent analyses presented in this paper. All of our findings continue to hold if we cluster

standard errors at both the customer and seller levels.

Panel B of Table 4 gives the results from specification (2). In this specification, we use data from

the MNL approach as the baseline, so the coefficients of SF-ML and AF-ML approach indicators

represent the financial performance difference between the MNL approach and each of the other

two approaches. Column (1) of Panel B does not control for any additional variables, and we

successfully recover the mean difference from Panel A: a customer visit under the MNL approach

generates 1.126 and 0.015 more RMB per visit compared to the SF-ML and AF-ML approaches.

The difference between the financial performance of the MNL approach and the SF-ML approach

is statistically significant, while the financial performance of the MNL approach is statistically

indifferent from that of the AF-ML approach. Column (2) of Panel B controls for the customer

characteristics, seller fixed effects, and date fixed effects, and qualitatively we observe the same set

of results.

The results described above indicate that the MNL approach performs quite well in relation

to both of the machine-learning-based approaches. In what follows, we show that this superior

performance cannot be explained by superior prediction accuracy, since similar to the results of

our case study presented in Section 3.3, we find again that Alibaba’s machine learning models are

far more accurate than the fitted MNL models. As such, we subsequently provide an alternative

explanation for why the MNL-based-approach performs so well, and also explore where there is

potential for improvement with regard to the MNL approach.

6.2. Purchase Probability Accuracy

In this section, we comparing the fitting accuracies of each fitted model using the experimental

sales data that was generated from March 12, 2018, to March 18, 2018, as the hold-out data set

from which we compute the two accuracy metrics described in Section 3.3. Due to the complexities

of implementing various approaches, each customer can only be assigned to a single approach;

therefore, for each customer visit we only have access to one set of purchase probability estimates.

Moreover, given the historical data of each customer visit, we cannot retrospectively compute the

purchase probabilities from other approaches that were not used to serve this visit because the

 Electronic copy available at: https://ssrn.com/abstract=3232059 



Feldman, Zhang and Liu: Customer Choice Models versus Machine Learning
29

Table 5 Model Prediction Performance

Panel A: Summary Statistics of Prediction Performance on Purchases

MNL SF-ML MNL AF-ML
ClassificationAccuracy 36.31% 74.55% 36.31% 77.50%

Difference (All p-values) 38.24% (< 0.0001) 41.19% (< 0.0001)
AverageeRank 2.51 1.51 2.51 1.43

Difference (All p-values) 1.00 (< 0.0001) 1.08 (< 0.0001)
Observations 82,957 68,395 82,957 86,238

Panel B: OLS Regression Results on Model Prediction Performance

Dependent variable:

ClassificationAccuracy AverageRank

(1) (2)

SF-ML 0.408∗∗∗∗ −1.075∗∗∗∗

(0.003) (0.007)
AF-ML 0.437∗∗∗∗ −1.152∗∗∗∗

(0.003) (0.006)

Buyer Controls Yes Yes
Seller Fixed Effect Yes Yes
Date Fixed Effect Yes Yes

Observations 237,417 237,417

Note: ∗p < 0.10;∗∗p < 0.05; ∗∗∗p < 0.01; ∗∗∗∗p < 0.001. Standard errors are robust and clustered at the customer

level. Panel B reports the average prediction power of customers’ purchasing behaviors during our experiment. In

Panel C, Columns (1) and (2) report the reports from OLS regression on models’ prediction power of customers’

purchasing behaviors.

dynamic features of this visit cannot be recorded by the system. As a result, for each approach

we only compute the two accuracy metrics using data from customers who were assigned to that

particular approach, which might result in accuracy scores that are biased by the underlying

approach used to choose the six-product displays. For example, instead of solving problem MNL-

Card , imagine that the MNL approach always recommended the product with the largest preference

weight along with the five products with lowest preference weights. This approach is not likely to

be profitable, but it will lead to a high classification accuracy for the MNL approach.

The discussion above explains why there is a different number of observations for each approach

in Table 5. Further, this discussion is included for full transparency. While our results clearly are

not biased to the extent of the example above, they should nonetheless be taken with a grain of

salt; the results have qualitative significance, but the exact accuracy scores might not perfectly

reflect the accuracy of the underlying estimation scheme. Again, the complexities and intricacies

that come with implementing this sort of full-scale recommendation system significantly complicate

any sort of ex-post analysis.

Panel A of Table 5 gives the accuracy of the fitted model for each of the three approaches based

on the two metrics we consider. The top two rows of Panel A show that the classification accuracies

are 36.31%, 74.55%, and 77.50% for the MNL, SF-ML, and AF-ML approaches respectively. These
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differences in classification accuracies are highly significantly (all p-values < 0.0001). The bottom

two rows of Panel A show that the average rank of the purchased products is 2.51, 1.51, and 1.43 for

the MNL, SF-ML, and AF-ML approaches respectively and that the pair-wise differences between

these average ranks are statistically significantly (all p-values < 0.0001).

We next conduct regression analyses to determine whether the differences in prediction accuracy

can be recovered when we control for characteristics that may affect customer purchasing behavior.

We introduce two terms to conduct this analysis: TopPurchasedkt and AveragePurchaseRankkt.

TopPurchasedkt is a binary indicator that is 1 if customer t who visited seller k purchased the

product with the highest predicted purchase probability and 0 otherwise. AveragePurchaseRankkt

is the average rank of purchased products for customer t’s visit to seller k. We use the following

OLS regression specification:

TopPurchasedkt = α2
0 +α2

1Approacht +Xt +Xk +Dt + εkt (3)

AveragePurchaseRankkt = α3
0 +α3

1Approacht +Xt +Xk +Dt + εkt (4)

where the set of controls is the same as in specification (2). Our results all hold true if we clus-

ter standard errors at both the customer and seller levels or employ a logistic regression on

TopPurchasedit (a binary dependent variable).

Columns (1) and (2) in Panel B of Table 5 present results from specifications (4) and (5). In

these specifications, we use the accuracy performance under the MNL approach as a baseline, so

the coefficients of the SF-ML and AF-ML indicators represent the difference between the MNL

approach and each of the machine learning approaches. The coefficients of column (1) are all posi-

tively significant, showing that both machine learning approaches have higher prediction accuracy

compared to the MNL approach. Notice that the magnitude of the difference (for example, 29.8%

between the MNL approach and the SF-ML approach) is similar to that in Panel A (i.e., 28.43%).

This shows that controlling for additional fixed effects does not change our results much, which pro-

vides further evidence that our experiments are properly randomized. Column (2) echoes this result

by showing that the average rank of purchased products under both machine learning approaches

is lower than the average rank of the purchased products under the MNL approach.

As foreshadowed by the case study presented in Section 3.3, we demonstrate that while the

MNL approach performs much better than the SF-ML approach and on par with the AF-ML

approach in terms of revenue per visit, it actually has significantly worse prediction accuracy than

both machine learning approaches with respect to both accuracy metrics. Consequently, we seek

an explanation for the superior financial performance of the MNL approach. In what follows, we

provide one such explanation: the MNL approach produces six-product displays that ultimately

lead to higher revenue products being purchased.
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Table 6 Mechanism Behind MNL-based Model’s Superior Financial Performance

Panel A: Summary Statistics of Mechanisms

MNL SF-ML MNL AF-ML
RevenuePerVisit (RMB) 5.17 4.04 5.17 5.16
Difference (All p-values) 1.13 (< 0.0001) 0.01 (0.8346)

PurchaseIncidence 2.39% 1.96% 2.39% 2.49%
Difference (All p-values) 0.43 (< 0.0001) -0.1 (< 0.0001)

Observations 3,469,129 3,484,555 3,469,129 3,467,965

PricePerPurchase 216.2 206.1 216.2 207.3
Difference (All p-values) 10.1 (< 0.0001) 9.9 (< 0.0001)

Observations 82,957 68,395 82,957 86,238

Panel B: OLS Regression Results on Model Financial Performance

Dependent variable:

Revenue PurchaseIncidence PricePerPurchase

(1) (2) (3)

SF-ML −0.987∗∗∗ −0.004∗∗∗ −6.349∗∗∗

(0.073) (0.0001) (1.820)
AF-ML 0.032 0.001∗∗∗ −5.895∗∗∗

(0.077) (0.0001) (2.069)

Buyer Controls Yes Yes Yes Yes
Seller Fixed Effect Yes Yes Yes Yes
Date Fixed Effect Yes Yes Yes Yes

Observations 10,410,587 10,410,587 237,417

Note: ∗p < 0.10;∗∗p < 0.05; ∗∗∗p < 0.01; ∗∗∗∗p < 0.001. Standard errors are robust and clustered at the customer

level. Panel A reports the average revenue per visit, average purchasing probability and average price conditional

on purchasing across different algorithms duing our experiment, March 12, 2018 to March 18, 2018. Panel B report

the corresponding results from OLS regressions controlling for customer characteristics, seller fixed effects and

date fixed effects.

6.3. Average Purchase Price

In this section, we provide one potential explanation for the superior financial performance of the

MNL approach. Specifically, we show that on average the MNL-based approach chooses six-product

displays that lead to purchases of higher revenue products. To formalize this analysis, we first define

PurchaseIncidencekt as a binary indicator equal to 1 if customer t’s visit to seller k results in a

purchase and 0 otherwise. We also define PricePerPurchasekt as the average price of the purchased

products during customer t’s visit to seller k.

Panel A of Table 6 shows the RevenuePerVisitkt, PurchaseIncidencekt, and PricePerPurchasekt

for all three approaches during our experimental period. The left side of Panel A shows that the

MNL approach generates a higher revenue per visit and has a higher purchasing incidence than

the SF-ML approach. In particular, under the MNL approach the average purchasing price is 4.9%

higher than the average purchasing price under the SF-ML approach. Further, under the MNL

approach customers on average make a purchase 22% more frequently than under the SF-ML

approach. Hence, while the SF-ML approach produces more accurate estimates of the purchase
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probabilities, it is not able to offer assortments that are as desirable nor as profitable as those

offered by the MNL approach.

The comparison between the MNL approach and AF-ML approach is shown on the right side of

Panel A in Table 6. We see that the MNL approach leads to a significantly higher average purchasing

price (i.e., RMB 216.2 versus RMB 207.3, p-value < 0.00001) and significantly lower purchasing

incidence (i.e., 2.39% versus 2.49%, p-value < 0.00001), which ultimately leads to similar revenue

performance as the two metrics balance each other. It is interesting that there is only a small, albeit

statistically significant (p-value < 0.01) improvement in the accuracy of the estimated purchase

probabilities as we move from AF-ML to SF-ML, but there is a large improvement in the revenue

per visit (also statistically significant). This either demonstrates that the efficacy of the machine-

learning-based approaches is highly sensitive to the accuracy of the estimated purchase probabilities

or it shows that additional accuracy metrics are needed to better tease out the differences in

the estimated purchase probabilities under the two approaches. Panel B of Table 6 reports the

regression results, controlling for customer characteristics, seller fixed effects, and date fixed effects

and using specifications similar to specification 2. The regression results generate the same insights

as those in Panel A of Table 6.

6.4. Heterogeneous Treatment Effect and Weakness of the MNL-Based Approach

In this section, we present several exploratory analyses about the heterogeneous treatment effects

of using the MNL approach versus the machine-learning-based approaches. There are two salient

limitations of using the MNL choice model to capture customer purchasing patterns in this setting.

First, the MNL choice model assumes that each customer only buys a single product, while in

practice customers often make multiple purchases. Second, the MNL choice model in its standard

form cannot incorporate customer click behavior within how it models customer preferences. Based

on these theoretical limitations, we identify two seller characteristics that may influence the per-

formance of the MNL approach. We first define MultiPurchaseCountk to be the number of visits to

seller k in which the customer makes multiple purchases. Second, we define Click-to-Purchasek as

the ratio of the number of clicked products to the number of purchased products across all visits

to seller k.

We rely on the following OLS regression specifications to test the interaction between the algo-

rithm indicator and the aforementioned list of moderating factors:

RevenuePerVisitkt =α4
0 +α4

1Approacht +α4
2Moderating Factork+ (5)

α4
3Approacht×ModeratingFactork +Xt +Xk +Dt + εkt
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Table 7 Heterogeneous Treatment Effect

Dependent variable:

Revenue

(1) (2)

SF-ML −0.822∗∗∗∗ −0.780∗∗∗∗

(0.068) (0.065)
SF-ML ×MultiPurchaseCount 0.030∗∗∗

(0.012)
SF-ML ×Click-to-Purchase 0.067∗

(0.035)

Customer Controls Yes Yes
Seller Fixed Effects No No
Date Fixed Effects Yes Yes
Observations 5,326,664 5,326,664

Note: ∗p < 0.10;∗∗p < 0.05; ∗∗∗p < 0.01; ∗∗∗∗p < 0.001. Standard errors are robust and clustered at the customer

level. This table reports the results based on Equation 5.

where ModeratingFactori ∈ {Click-to-Purchasek,MultiPurchaseCountk}. We only focus on the

observations corresponding to customers who were assigned to the MNL and SF-ML approaches

and from sellers who had at least 100 visits, who make up more than 76% of the sellers.7

Table 7 reports the results of our heterogeneous treatment analyses. Column (1) of Table 7

shows that the coefficient of the interaction of the SF-ML indicator and MultiPurchaseCount is

positive, demonstrating that the difference in financial performance of our MNL approach and the

SF-ML approach shrinks when there are more multiple-purchase incidences. In other words, our

MNL approach performs worse for sellers whose customers are more likely to purchase multiple

items from an offer set. Column (2) also demonstrates a positive interaction term between the SF-

ML indicator and Click-to-Purchase. Similarly, this demonstrates that the MNL-based approach

performs worse when the ratio of clicks to purchases is high. Columns (1) and (2) collectively show

that the theoretical limitations we identified with the MNL approach indeed affect its performance:

a one unit increase in MultiPurchaseCountk (Click-to-purchasek) would translate to 0.03 (0.067)

decrease in the financial performance differences between the MNL and SF-ML approaches. This

is a sign that we need future work to build choice models that are able to model click behavior as

well as customers buying multiple items from a set of offered products.

7. Discussion and Conclusion

In this paper, to the best of our knowledge, we document the first full-scale implementation of

a customer-choice-model-based product recommendation system. We find that our MNL-based

approach generates 28% higher revenue per customer visit compared to the machine-learning-based

7 Our results are qualitatively robust if we use other numbers of visit cutoffs, such as 500 or 1000.
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approach that uses the same set of features. Moreover, we find that our MNL-based approach per-

forms slightly better than the current full-feature machine-learning-based approach, which Alibaba

has been improving for more than two years. We then show that our MNL approach performs well

because it recommends more profitable items by incorporating substitution behavior within the

operational problem that guides product display decisions. However, while the machine learning

approach can leverage big data to produce accurate estimates of the purchase probabilities, it

sometimes fails to identify profitable sets of products to display because it does not factor in the

substitution behavior between products offered together. We are hopeful that our work inspires

other companies to consider a choice-model-based approach within their product recommendation

system and that it also encourages other researchers in operations management to seek out avenues

to implement their algorithms in practice.

In order to further improve choice-model-based recommendation systems, we again highlight

several main difficulties in implementing our MNL-based approach, and in doing so we also shed

light on several potential research directions. The first difficulty we faced was properly dealing with

the inherent censorship issue present in the sales data in the process of estimating our MNL model.

Previous techniques used to uncensor the data are rendered ineffective for the scale of problems

common in industry, which calls for future research to deal with censorship in a big data setting.

Second, we show that our MNL-based approach does not perform well when customers purchase

multiple items from the offer set. Unfortunately, to the best of our knowledge there is no choice

model that is able to capture multiple purchase events from a single customer visit. Developing

such a model represents a natural next step to expand the breadth of retailing scenarios that

can be captured using choice models. Lastly, in Section 6.4, we demonstrate that the click data

potentially provides useful signals of customer preference. Since our MNL-based approach ignores

click behavior in both the estimation and assortment phases, one interesting direction may consider

incorporating click behavior within the MNL choice model framework.
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Appendices
A. An Improved Algorithm for the Cardinality Constrained MNL

Assortment Problem

The cardinality-constrained assortment problem of interest can be stated as follows:

ZOPT = max
y∈F

R(y). (MNL-Card)

We let y∗ be the optimal solution to problem MNL-Card . In what follows, we give a novel imple-

mentation of this algorithm, which improves upon this previous run time by a factor of O(logn).

First, following the direction of Rusmevichientong et al. (2010), we consider the function

f(z) = max
y∈F

∑
j∈N

vj(rj − z)yj. (6)

Additionally, we let

ŷ(z) = arg max
y∈F

∑
j∈N

vj(rj − z)yj.
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We note that for a fixed z, it is fairly straightforward to recover ŷ(z). To see this, let cj(z) = vj(rj−z)

be the “contribution” of product j ∈ N to the objective value of (6). The assortment ŷ(z) will

trivially consist of the six products with the largest values of cj(z). The following theorem, which has

appeared in one form or another in numerous assortment optimization papers (Rusmevichientong

et al. 2010, Davis et al. 2014, 2013), elucidates the importance of (6).

Theorem 1. Let ẑ ≥ 0 satisfy f(ẑ) = ẑ, then we have that R(ŷ(ẑ)) =R(y∗).

T o help unclutter notation, we drop the dependence of ŷ(ẑ) on ẑ and simply write ŷ for the

remainder of this proof. First, we note that such a fixed point must exist, since f(0)≥ 0 and f(z)

is decreasing in z. We begin by showing that R(ŷ) = ẑ. To see this, note that f(ẑ) = ẑ implies that∑
j∈N

vjt(rj − ẑ)ŷj = ẑ

=⇒
∑
j∈N

vjtrj ŷj = ẑ(1 +
∑
j∈N

vjt)

=⇒ R(ŷ) = ẑ,

where the final implication results by dividing both sides of the equality by 1 +
∑

j∈N vjt. Next we

show that R(y∗)≤ ẑ. Since f(ẑ) = ẑ and y∗ is feasible to problem (6), we have that∑
j∈N

vjt(rj − ẑ)y∗j ≤ ẑ

=⇒
∑
j∈N

vjtrjy
∗
j ≤ ẑ(1 +

∑
j∈N

vjt)

=⇒ R(y∗)≤ ẑ.

Finally, combining the two results gives that R(y∗)≤ ẑ = R(ŷ), and hence since y∗ is optimal to

MNL-Card , we must have R(ŷ) =R(y∗).

In short, Theorem 1 states that if we can find a ẑ ≥ 0 that is a fixed point of (6), then we can

recover the optimal assortment to problem MNL-Card through ŷ(ẑ). First, such a fixed point is

guaranteed to exist since f(0)≥ 0 and f(z) is trivially decreasing in z. Hence, all that remains is to

describe an efficient process for finding ẑ. The most naive (and impractical) way to accomplish this

task would be to check all possible values of z. Equivalently, we could compute all of the unique

assortments ŷ(z) that result from this search over all possible values of z and then select the one

with the largest expected revenue. At first glance, this approach seems as equally impractical as

the search over all possible values of z. However, Rusmevichientong et al. (2010) cleverly note that

since the assortments ŷ(z) only depend on the relative ordering of the contributions of each product

cj(z), the number of unique assortments that can possibly arise from an exhaustive search over all

possible values of z is O(n2). To see this, note that the relative ordering of the contributions cj(z)
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only changes at values of z where ci(z) = cj(z) for products i, j ∈N . Further, since the contribution

of each product is a linear function of z, there can be at most O(n2) intersection points since each

of the n lines can intersect one of the other n− 1 lines at most once.

Algorithm 1 Median Bisection

1: t=0

2: z−← 0

3: z+←max
i∈N

ri

4: Z̄t←Z

5: while Z̄t > 2 do

6: zm←Med(Z̄t)

7: f ← f(zm)

8: if f < z then

9: z−← zm

10: Z̄t+1←{z ∈ Z̄t : z ≥ zm}.

11: else

12: z+← zm

13: Z̄t+1←{z ∈ Z̄t : z < zm}

14: end if

15: t← t+ 1

16: end while

17: return ŷ(z−+
z+−z−

2
)

More formally, for products i, j ∈N , we let z(i, j) be the value of z satisfying ci(z) = cj(z). In

other words, z(i, j) =
viri−vjrj
vi−vj

. We denote the set of all such intersection points as Z = {z(i, j) :

i, j ∈N}∪{0}, and note that this set can be constructed in O(n2) by simply enumerating all pairs

of products. The candidate assortments can then be captured through the set Y = {ŷ(z) : z ∈Z},

and based on the discussion above, we know that y∗ = arg maxy∈Y R(y). From a computational

perspective, the most burdensome step is that of computing the set of candidate assortments Y. To

see this, note that for each z ∈Z, in order to compute the assortment ŷ(z) we must compute the

relative ordering of the contributions ci(z) for each product i∈N . Rusmevichientong et al. (2010)

show that by first sorting Z, these relative orderings can be computed recursively in O(n2) and

hence the total run time for computing Y in O(n2 logn) since the set of intersection points Z must

be sorted. In what follows, we give an algorithm that finds y∗ is O(n2) by never fully computing

the set Y. Instead, a bisection approach is used to find the assortment ŷ(ẑ) associated with the

fixed point ẑ.

Our approach begins by computing Z. We then run the bisection algorithm given in Algorithm 1,

where the function Med(S) returns the median value of a collection of numbers of S. In Algorithm
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1, we maintain throughout that z− ≤ ẑ ≤ z+. Moreover, when |Z̄t|= 2, we know that the ordering

between the contributions ci(z) does not change for any z satisfying z− ≤ z ≤ z+ and hence for

any such z we have that ŷ(z) = y∗. The following Proposition establishes that the running time of

Algorithm 1 is indeed O(n2), where the bottleneck step is in computing Z.

Proposition 1. The running time of Algorithm 1 is O(n2)

W e begin by showing that the while loop runs at most L=O() times. To see this, note that

we have Z̄t+1 ≤ 1
2
Z̄t + 1 due to lines 10 or 13. We can compute Z̄t+1 in lines 10 or 13 by simply

enumerating over all values z ∈ Z̄t and checking for the desired condition on z. The total runninig

time of this approach over the L iteration of the algorithm is
∑L

t=0 |Z̄t|=O(n2). Finally, since the

median value of Z̄t can be computed in O(|Z̄t|), we get a total running time of
∑L

t=0O(|Z̄t|) =O(n2)

for computing the median value zm over all iterations of the algorithm. Combining all of the steps,

the overall run time is O(n2).

For each arriving customer, we use Algorithm 1 to determine the set of six products to display.

Even though the algorithm runs in O(n2), our implementation on Alibaba easily runs within the

50-millisecond threshold and has never timed-out.

B. Extensions of the MNL Assortment Problem

In this section, we present two extensions of MNL-Card , which consider additional operational

levers that Alibaba could use to improve revenues. For each such lever, we formulate the new

assortment problem and then present a general approach that can be used to either solve the

problem optimally, or provide an approximate solution with a provably near optimal performance

guarantee. We note that the intent of this section is to present new theoretical results that when

applied, have the potential to increase Alibaba’s revenue. Unfortunately, the current set-up of our

field experiments does not allow us to set prices or change product display icons, and hence these

result are theoretical in nature.

1. Joint pricing and assortment : In this version of the problem, a retailer must simultaneously

decide which products to offer and the prices to charge for each offered product. We assume

that each offered product must be priced at one of m prices, indexed by the set K = {1, . . . ,m}.
If the retailer chooses to price product i at price j, then the revenue and MNL-based preference

weight of this product are given by rj and vij respectively. The preference weight could also

be subscripted by the arriving customer type t, however we drop this dependence for ease of

exposition. We let yij ∈ {0,1} be a binary indicator of whether product i ∈ N is offered at

price j ∈K. In this case, the set of feasible assortment and pricing decisions can be captured

through the set

F1 = {y ∈ {0,1}mn :
m∑
j=1

yij ≤ 1 ∀ i∈N}∩ {y ∈ {0,1}mn :
n∑
i=1

m∑
j=1

yij = 6},
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which captures the notion that each product can only be offered at one price and that we must

continue to offer six product displays. With this notation in hand, we present the corresponding

joint pricing and assortment problem below

max
y∈F1

R(y) = max
y∈F1

∑n

i=1

∑m

j=1 riyij

1 +
∑n

i=1

∑m

j=1 vijyij
. (7)

2. Icon display size: Here, we consider the problem of optimally choosing the size of the icons

corresponding to each displayed product. Note that in the current setup, the icons of all

six displayed products are the same size (See Figure 2), but in other settings on Alibaba,

the icon size may be different, which means that this extension is practically relevant. To

model our updated setting in which product icon sizes do not have to be homogeneous, we

assume that the icon of each displayed product can take on one of m sizes indexed by the

set K = {1, . . . ,m}, and use cj to be the screen space consumed by an icon of size j ∈K. We

assume the total available screen space is C. Further, we use vij to be the MNL preference

weight of product i when it is offered with an icon of size j. In this way, we assume that the

preference weight of each product is influenced by the size of the icon used to display this

product to customers. In this setting, the feasible assortments can be captured through the

set

F2 = {y ∈ {0,1}mn :
m∑
j=1

yij ≤ 1 ∀ i∈N}∩ {y ∈ {0,1}mn :
n∑
i=1

m∑
j=1

cjyij ≤C},

which reflect the constraints that we must select a single icon size for each displayed product as

well as the restriction that we cannot use more than the C units of available screen space. Note

that in this case, it is possible for more than six products to be offered. The corresponding

assortment problem is then

max
y∈F2

R(y) = max
y∈F2

∑n

i=1

∑m

j=1 riyij

1 +
∑n

i=1

∑m

j=1 vijyij
. (8)

For an appropriately chosen constraint matrix Al and right hand side vector bl, it is straight-

forward to see that each collection of feasible assortment F1 and F2 can be encoded through the

polytopes Aly ≤ bl for l = 1,2. If the matrix Al is totally unimodular, Davis et al. (2013) show

that these assortment problems can be formulated as a tractable linear program, where both the

number of variables and constraints grows linearly in the number of products. For example, when

a cardinality constraint and a collection of discrete pricing constraints are combined as is done to

create F1, then totally unimodularity is preserved. Hence the following linear program, which was

originally presented in in Davis et al. (2013), provides an optimal polynomial time algorithm to

solve the joint pricing and assortment problem.

max
n∑
i=1

m∑
j=1

riwij (Pricing LP)
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w0 +
n∑
i=1

m∑
j=1

wj = 1

wij
vij
≤w0 ∀ j = 1, . . . , n

m∑
j=1

wij
vij
≤w0 ∀ i= 1, . . . , n (9)

n∑
i=1

m∑
j=1

wij
vij

= 6 ·w0 (10)

wij ≥ 0 ∀ j = 1, . . . , n,

where the optimal decision variable w∗ij can be interpreted as the fraction of time that product i

is purchased at price j under the optimal assortment. In other words, if y∗ij is the optimal solution

to problem (7), then Davis et al. (2013) show that

w∗ij =
vijy

∗
ij

1 +
n∑
i=1

m∑
j=1

vijy
∗
ij

.

To help give some intuition as to why the above linear program captures problem (7), we show

that constraints (9) and (10) together encode F1. To start, note that under the optimal solution

w∗ij, constraint (9) can be re-arranged as follows

m∑
j=1

w∗ij
vij
· 1

w∗0
=

m∑
j=1

y∗ij ≤ 1,

which is exactly encodes the notion that each product can only offered at a single price. Further,

constraint (10) can similarly be re-arranged as follows
n∑
i=1

m∑
j=1

w∗ij
vij
· 1

w∗0
=

n∑
i=1

m∑
j=1

y∗ij ≤ 6,

which encodes the cardinality constraint.

Unfortunately, however, when a knapsack or space constraint is added as is done to create F2,

totally unimodularity of the constraint matric A2 no longer holds and hence the linear programming

approach of Davis et al. (2013) is seemingly rendered ineffective. Surprisingly, however, we are

to salvage the optimal solution to this linear programming to produce a feasible assortment that

garners an expected revenue of at least one-third of the optimal expected revenue.

B.1. Icon Display Size Assortment Problem

In this section, we consider the problem Alibaba faces in optimizing the sizes of each display icon

for the assortment of products offered to each arriving customer. As discussed in Appendix B, this

problem is formally stated as

OPT = max
y∈F2

∑n

i=1

∑m

j=1 riyij

1 +
∑n

i=1

∑m

j=1 vijyij
,
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where we remind the reader that F2 = {y ∈ {0,1}mn :
∑m

j=1 yij ≤ 1 ∀ i ∈ N} ∩ {y ∈ {0,1}mn :∑n

i=1

∑m

j=1 cjyij ≤ C}. To view this problem from a more standard lens in which the assortment

problem simply consists of choosing a subset of products to offer, we assume the retailer is given m

copies of each product i∈N (one for each icon size), and impose the constraint that only one copy

of each product can ever be offered. Hence each product can be viewed as a tuple (i, j), where the

first entry indicates the item i ∈N and the second entry gives the icon size j ∈K. For notational

convenience moving forward, we let N̄ = {(i, j) : i ∈ N,j ∈ K} to be the set containing all such

tuples. Further for assortment S ⊆ N̄ , and product (i, j)∈ N̄ , we let

P(i,j)(S) =
vij

1 +
∑

(k,l)∈S vkl
,

be the MNL purchase probabilities and R(S) =
∑

(i,j)∈S ri ·P(i,j)(S) be the expected revenue of this

assortment. We devote the remainder of this section to proving the following theorem.

Theorem 2. There is a polynomial time algorithm that produces an assortment S ⊆ N̄ that

satisfies R(S)≥ 1
3
·OPT.

To begin, we note that the matrix A needed that encodes the constraints {y ∈ {0,1}mn :∑m

j=1 yij ≤ 1 ∀ i ∈N} is an interval matrix, meaning the columns can be organized so each row is

a collection of contiguous ones. Since interval matrices are totally unimodular, we can use the fol-

lowing linear programming formulation (Davis et al. 2013) of the icon display assortment problem,

in which we do not yet impose the constraint limiting the screen space consumption of the offered

assortment.

max
n∑
i=1

m∑
j=1

riwij (Icon LP)

w0 +
n∑
i=1

m∑
j=1

wj = 1 (11)

wij
vij
≤ y0 ∀ j = 1, . . . , n (12)

m∑
j=1

wij
vij
≤ y0 ∀ i= 1, . . . , n (13)

wij ≥ 0 ∀ j = 1, . . . , n. (14)

Let w∗ij be the optimal solution to the to Icon LP . Davis et al. (2013) shows that the extreme

points of this linear program have special structure. Namely, that there is a bijection between

extreme points and feasible assortments; for each feasible assortment S ⊆ N̄ , there is an extreme

point of Icon LP that satisfies

wij =

{
vij

1+
∑

(k,l)∈S vkl
, if (i, j)∈ S

0, otherwise.
(15)
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Hence, there is a positive coordinate for each offered product whose magnitude is exactly the pur-

chase probability under S. Letting S∗ = {(i, j)∈ N̄ :w∗ij > 0}, we get that R(S∗) =
∑n

i=1

∑m

j=1 riw
∗
ij

and hence the objective value of Icon LP correctly computes the optimal expected revenue of S∗.

Further, under the optimal solution w∗ij, constraint (13) becomes

m∑
j=1

w∗ij
vij
· 1

w∗0
=

m∑
j=1

1w∗ij>0 ≤ 1,

which correctly encodes the notion that at most one icon size will be picked for each displayed

product under S∗.

Next, we add the following constraint to Icon LP

n∑
i=1

m∑
j=1

cj ·
wij
vij
≤C ·w0, (16)

which would capture the limit on the screen space that the displayed product icons can take up if

the optimal decision variables continued to have the structure given in (15). Note that if this were

indeed the case, then this constraint becomes

n∑
i=1

m∑
j=1

cj ·
w∗ij
vij
· 1

w∗0
=

n∑
i=1

m∑
j=1

cj ·1w∗ij>0 =
∑

(i,j)∈S∗
cj ≤C,

as desired. Unfortunately, adding this constraint breaks the total unimodularity of the constraint

structure, since adding a knapsack constraint clearly does not preserve total unimodularity, and

hence the structure presented in (15) does not hold for the new optimal solution to the linear

program. However, since we have added only a single constraint to Icon LP , the new optimal

solution can be written as a convex combination of two extreme points of the polytope described

by (11)-(14), which both have the structure presented in (15).

More formally, let ŵ = (ŵ11, . . . , ŵnm) be the optimal solution to Icon LP after adding con-

straint (16). For some α∈ [0,1], we must have that ŵ= α ·w′+(1−α) ·w′′, where w′ = (w′11, . . . ,w
′
nm)

and w′′ = (w′′11, . . . ,w
′′
nm) are extreme points of the polyhedron described by the constraints (11)-

(14). Further we let S′ = {(i, j) ∈ N̄ : w′ij > 0} and S′′ = {(i, j) ∈ N̄ : w′′ij > 0} be the assortments

related to these two extreme points.

Moving forward, we let

R∗ =
n∑
i=1

m∑
j=1

riŵij

R′ =
n∑
i=1

m∑
j=1

riw
′
ij =R(S′)

R′′ =
n∑
i=1

m∑
j=1

riw
′′
ij =R(S′′),
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where R′ and R′′ give the expected revenues of the assortments S′ and S′′ due to the structure of

any extreme point given in (15). Further, note that we have R∗ = α ·R′+(1−α) ·R′′ ≥OPT, where

the inequality follows since we have established that Icon LP with constraint (16) is a relaxation

of the original problem. Further, we let

C∗ =
n∑
i=1

m∑
j=1

w∗ij
vij
· 1

w∗0

C′ =
n∑
i=1

m∑
j=1

w′ij
vij
· 1

w′0
=

∑
(i,j)∈S′

cj

C′′ =
n∑
i=1

m∑
j=1

w′′ij
vij
· 1

w′′0
=

∑
(i,j)∈S′′

cj,

where for the latter two expressions we use the structure of any extreme point that is given in (15).

Further, we have that C∗ = α · C′ + (1 − α) · C′′ ≤ C, which results by simply plugging ŵ into

constraint (16).

Next, we assume without loss of generality that C′ ≥C′′ and hence the assortment S′′ is feasible

since we must have C′′ ≤C. Thus, we have found one initial feasible solution with expected revenue

R′′. Next, we show how to find an assortment Ŝ that satisfies R(Ŝ)≥ α · R′
2

. Consider the following

linear programming relaxation of a constructed knapsack problem in which the items are the

products of S′.

Z∗knap = max
∑

(i,j)∈S′
rjP(i,j)(S

′)xij (KNAP)

s.t.
∑

(i,j)∈S′
cjxij ≤C

0≤ xij ≤ 1.

In this knapsack problem, the value of item (i, j)∈ S′ is rjP(i,j)(S
′) and its space consumption is cj.

Note that the solution x̃ij = α for all (i, j)∈ S′ is a feasible solution to the knapsack linear program

and has objective function value equal to α ·R′. Hence the optimal objective function value of the

knapsack linear program is at least α · R′. Further, it is well known that the optimal solution to

the linear programming relaxation of any knapsack problem has at most one fractional variable

value. Let x∗ be an optimal solution to the linear programming relaxation, and let Ŝ1 = {(i, j) ∈
S′ : x∗ij = 1} and Ŝ2 = {(i, j)∈ S′ : 0<x∗ij < 1}. Note that |Ŝ2| ≤ 1. The following lemma bounds the

revenue of the best of these two solutions.

Lemma 1. Let Ŝ = arg maxS∈{Ŝ1,Ŝ2}R(S). Then,
∑

(i,j)∈Ŝ cj ≤C and

R(Ŝ)≥ α

2
·R′.
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By the feasibility of x∗, we must have that
∑

(i,j)∈Ŝ1 cj ≤C. Further, without loss of generality,

every product has a space consumption of at most C. Therefore,
∑

(i,j)∈Ŝ2 cj ≤ C as well, and so∑
(i,j)∈Ŝ cj ≤C. Next, we consider the revenue of assortment Ŝ.

R(Ŝ) = max
{
R(Ŝ1),R(Ŝ2)

}
= max

 ∑
(i,j)∈Ŝ1

rjP(i,j)(Ŝ1),
∑

(i,j)∈Ŝ2

rjP(i,j)(Ŝ2)


≥max

 ∑
(i,j)∈Ŝ1

rjP(i,j)(S
′),

∑
(i,j)∈Ŝ2

rjP(i,j)(S
′)


≥ 1

2

 ∑
(i,j)∈S′

rjP(i,j)(S
′)x∗(i,j)


≥ α

2
·R′.

The first inequality comes from the fact that Ŝ1, Ŝ2 ⊆ S′, and hence the MNL purchase probabilities

of each product can only decrease moving from Ŝ1 or Ŝ2 to S′ . The second inequality results from

the fact that ∑
(i,j)∈Ŝ1

rjP(i,j)(S
′) +

∑
(i,j)∈Ŝ2

rjP(i,j)(S
′)≥

∑
(i,j)∈S′

rjP(i,j)(S
′)x∗ij.

The last inequality results since Z∗knap =
∑

(i,j)∈S′ rjP(i,j)(S
′)x∗(i,j) ≥ α ·R′

At this point, we consider either offering the assortment S′′ or Ŝ. Let S̄ = arg maxS∈{S′′,Ŝ}R(S).

To conclude the proof of Theorem 2 we show that R(S̄)≥ 1
3
·OPT. To do so, note that we have that

R(S̄) = max{R′′,R(Ŝ)} ≥max{(1−α) ·R′, α
2
·R′}. Recall that α ·R′+(1−α) ·R′′ ≥R∗. Therefore,

if (1−α) ·R′′ ≥ 1
3
·R∗ ≥ 1

3
·OPT, the result holds. Otherwise, α ·R′ ≥ 2

3
·R∗, and again, the result

holds.

C. Implementation Details for Estimation Case Study

In this section, we provide the code we use for fitting the MNL and machine learning models within

the case study presented in Section 3.3.

C.1. Tensorflow MNL MLE implementation

This section contains a Tensorflow python implementation of the MNL MLE problem given in (1).

The input parameters have the following meaning, given that training data set contains records of

τ customer arrivals.

• num features: number of features in the data set. In our case this is 25.

• assort size: The number of products in each offered assortment. In our case this is 6.
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• offer data: This is a assort size · τ × num features numpy array, where each row is a feature

vector Xjt.

• purchase data: This is a assort size · τ ×1 numpy array, where each row is a binary indicator

of whether the given product was purchased by the arriving customer.

• batch size: The number of data points to use for training in each iteration of stochastic gradient

descent. We use 20,000.

• learning rate: The learning rate of the stochastic gradient descent algorithm. We use 0.05.

def Estimate_MNL_Classic(num_features, assort_size, offer_data, purchase_data, batch_size, learning_rate):

#Placeholders for offer data

offer_mnl = tf.placeholder(tf.float32, [None, assort_size, num_features])

#Placeholder for purchase data

purchase_mnl = tf.placeholder(tf.float32, [None, num_features])

#Create the variables to be estimated - the MNL feature weights

W = tf.Variable(tf.random_normal(shape=[num_features], mean=0, stddev=0.01), name="weights")

#Compute the log likelihood

first_term = tf.reduce_sum(tf.multiply(purchase_mnl, W),1)

second_term =tf.log(tf.reduce_sum( tf.exp(tf.reduce_sum(tf.multiply(offer_mnl,W),2)), 1) + 1)

cost = tf.reduce_sum(second_term-first_term)

#Optimization

optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost)

init = tf.global_variables_initializer()

epoch_count= 0

with tf.Session() as sess:

sess.run(init)

#Stopping criterion

while epoch_count<2000:

num_batches = int(purchase_data.shape[0]/batch_size)

log_like = 0

for b in range(num_batches+1):

if b<num_batches:

purchase_batch = purchase_data[b*batch_size:(b+1)*batch_size,:]

offer_batch = offer_data[b*batch_size:(b+1)*batch_size,:,:]

else:

purchase_batch = purchase_data[b*batch_size:,:]
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offer_batch = offer_data[b*batch_size:,:,:]

num_rows = purchase_batch.shape[0]

_,neg_log_like = sess.run(fetches=[optimizer, cost], \

feed_dict={offer_mnl:offer_batch, purchase_mnl:purchase_batch})

log_like+=neg_log_like

epoch_count+=1

#Get final weights

return sess.run(W)

C.2. Fitting the Machine Learning Models

This section contains a python implementation of Catboost for estimating click and purchase

probabilities, where we have done no hyperparameter tuning. The input parameters have the

following meaning.

• df train: Pandas dataframe containg the training data, which has a row for each product

displayed to each each customer and whose columns give the various feature values. Further,

there are additional binary columns (is click and is buy) that indicate whether the given

product was clicked and/or purchased.

• feature list: A list of column names corresponding to the features that will be used to fit the

Catboost model.

def Estimate_ML_Catboost(df_train, feature_list):

#Only look at clicked products

clicked_train = df_train.loc[df_train.is_click ==1 ,:]

#Training data for estimating conditional purchase probs

X_train_buy = np.array(clicked_train.loc[: , feature_list])

y_train_buy = np.array(clicked_train.is_buy)

#Training data for estimating click probs

X_train_click = np.array(df_train.loc[: , feature_list])

y_train_click = np.array(df_train.loc[: , "is_click"])

#Fitting the two catboost models

model_buy = CatBoostClassifier().fit(X_train_buy, y_train_buy)

model_click = CatBoostClassifier().fit(X_train_click, y_train_click)

return model_buy, model_click
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D. The Comparison of Full-feature MNL and Machine Learning
Model

Table 8 All-feature Model Financial Performance

AF-MNL AF-ML

RevenuePerVisit (RMB) 4.79 4.64
Difference (All p-values) 0.15
Relative Improvement 3.37%

T-test p-value < 0.0001
Observations 3,152,580 3,148,217

Notes. The table reports the average financial performance, in terms of revenue per customer visit, across different

algorithms during our five-day-long experimental period (September 20, 2018 - September 24, 2018).

We finished implementing and testing our MNL-based approach on all features by Septem-

ber 15th, 2018. Therefore, we conducted a five-day-long experiment from September 20nd, 2018

to September 24th, 2018 where customers are randomly assigned into the the all-feature-MNL-

choice-model-based approach (AF-MNL approach) and the all-feature-ML-based approach (AF-ML

approach) based on a unique hash number derived from the given customer’s ID and an experi-

ment ID. The AF-ML approach is exactly the same as the all-feature approach in Section 6 except

that the training data is in August and September instead of February and March. Similarly, the

AF-MNL approach is similar to the MNL-based approach in Section 6 except (a) the training data

has advanced to August and September; and (b) the estimation process uses all features instead

of the top 25 features.

Over the five days of our experiment, we observe 3,591,021 customer arrivals from 2,247,663

million unique customers. 1,125,381 of these customers are randomly assigned to the MNL-choice-

model-based approach on all features (i.e, AF-MNL approach) while 1,122,282 are assigned to

Alibaba’s original machine learning approach on all features (i.e, AF-ML approach). The customers

under AF-MNL approach collectively spend 15,114,748 RMB during the five days, while the cus-

tomers in the AF-ML approach spend 14,621,580 RMB, an improvement of 493,168 RMB (i.e.,

3.37% during the experimental period.

Table 8 presents the GMV per customer visit generated by these two approaches on all features.

The first row shows that the AF-MNL and AF-ML approaches generate RMB 4.79 and 4.64 per

customer visit respectively, and the different is 0.15 RMB per customer visit; in other words, the

AF-MNL approach improves the revenue per customer visit by 3.37% compared to the AF-ML

approach (p-value < 0.0001). This demonstrate that the MNL-based approach out-performs the

machine-learning-based approach even if both approaches are utilizing all features. We note that the

machine-learning-based approach on all features is exactly the algorithm and the feature set that is

used by Alibaba to recommend products prior to our collaboration. This shows that our algorithm
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improves the state-of-art recommender system of Alibaba by 3.37%, which leads to the adoption

of our algorithm as the main recommendation algorithm in this setting on Alibaba. We also note

that this improvement based on all features (i.e., 3.37%) is more modest than the improvement

based on only top 25 features (i.e., 28.0%), which may demonstrate that machine-learning-based

approaches can more easily scale up to more features.
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