
LECTURE 10: CONSTRAINED 

OPTIMIZATION – LAGRANGIAN 

DUAL PROBLEM

1. Lagrangian dual problem

2. Duality gap

3. Saddle point solution

4. Lagrangian dual vs. conjugate dual



Lagrangian dual problem



Property 1 – weak duality



Weak duality theorem



Property 2 – concavity and subgradient



Property 3 – duality gap
• Duality gap may exist



Example of duality gap



Property 4 – strong duality



Geometric interpretation of LD



Picture of duality gap



Full Lagrangian dual

•



Partial Lagrangian dual (1)
•



Partial Lagrangian dual (2)

•



Lagrangian dual of LP



Lagrangian dual of QP



Lagrangian dual of QP



Saddle point solution

• Definition



Saddle point and duality gap

• Basic idea : The existence of a saddle point solution to the 

Lagrangian function is a necessary and sufficient 

condition for the absence of a duality gap!



Proof



Saddle point theorem



Saddle point and KKT conditions



Proof



Lagrangian dual vs. conjugate dual

• Any real number 𝑥 can be uniquely expressed as

𝑥 = 𝑥+ − 𝑥−,

where 𝑥+ ≥ 0, 𝑥− ≥ 0 and 𝑥+ ⋅ 𝑥− = 0.

• Consider a standard form NLP:

min 𝑓(𝒙)

𝑠. 𝑡. 𝑔𝑖 𝒙 ≤ 0, 𝑖 = 1,… ,𝑚

ℎ𝑗 𝒙 = 0, 𝑗 = 1,… , 𝑝

𝒙 ∈ 𝐸+
𝑛



Lagrangian dual vs. conjugate dual

• Conjugate dual (CD)

𝑆 ≜ 𝒙 ∈ 𝐸𝑛 𝒈 𝒙 ≤ 𝟎, 𝒉 𝒙 = 𝟎

𝒳 ≜ 𝐸+
𝑛

𝒽 𝒚 ≜ sup
𝒙∈𝑆

𝒙T𝒚 − 𝑓 𝒙 , ∀𝒚 ∈ Ω

Ω ≜ 𝒚 ∈ 𝐸𝑛 sup
𝒙∈𝑆

𝒙T𝒚 − 𝑓 𝒙 ,< ∞

𝒴 ≜ 𝑑𝑢𝑎𝑙 𝒳 = 𝐸+
𝑛

(CD)     

min 𝒽 𝒚
𝑠. 𝑡. 𝒚 ∈ Ω

𝒚 ∈ 𝐸+
𝑛



Lagrangian dual vs. conjugate dual

• Lagrangian dual (LD)

min 𝑓(𝒙)

𝑠. 𝑡. 𝒈 𝒙 ≤ 𝟎

𝒉 𝒙 = 𝟎
−𝑥𝑖 ≤ 0, 𝑖 = 1,… , 𝑛

Let 𝑆 ≜ 𝒙 ∈ 𝐸𝑛 𝒈 𝒙 ≤ 𝟎, 𝒉 𝒙 = 𝟎 for partial Lagrangian:

(Partial LD)       
max 𝜙 𝝀 ≜ inf

𝒙∈𝑆
{𝑓 𝒙 + 𝝀T(−𝒙)}

𝑠. 𝑡. 𝝀 ≥ 𝟎

when inf
𝒙∈𝑆

{𝑓 𝒙 + 𝝀T(−𝒙)} exists.



Lagrangian dual vs. conjugate dual
• Lagrangian dual (LD)

(Partial LD)       
max 𝜙 𝝀 ≜ inf

𝒙∈𝑆
{𝑓 𝒙 + 𝝀T(−𝒙)}

𝑠. 𝑡. 𝝀 ≥ 𝟎

Notice that

𝜙 𝝀 = inf
𝒙∈𝑆

𝑓 𝒙 + 𝝀T −𝒙 > −∞

= (−) sup
𝒙∈𝑆

𝝀T𝒙 − 𝑓 𝒙 < ∞

= − 𝒽 𝝀
if and only if 𝝀 ∈ Ω.

• (Partial LD)   

max (−)𝒽 𝝀
𝑠. 𝑡. 𝝀 ∈ Ω

𝝀 ∈ 𝐸+
𝑛 =  

(−)min 𝒽 𝒚
𝑠. 𝑡. 𝒚 ∈ Ω

𝒚 ∈ 𝐸+
𝑛 (−)(CD)


