LECTURE 10: CONSTRAINED OPTIMIZATION – LAGRANGIAN DUAL PROBLEM

- 1. Lagrangian dual problem
- 2. Duality gap
- 3. Saddle point solution
- 4. Lagrangian dual vs. conjugate dual

Lagrangian dual problem

Primal Problem:

Lagrangian Dual Problem:

Property 1 – weak duality

Let \bar{x} be a primal feasible solution and $(\bar{\lambda}, \bar{\mu})$ be a dual feasible solution. Then

$$\begin{split} \phi(\bar{\lambda},\bar{\mu}) &= \inf_{x \in X} \{f(x) + \bar{\lambda}^T h(x) + \bar{\mu}^T g(x)\} \\ &\leq f(\bar{x}) + \underbrace{\bar{\lambda}^T h(\bar{x})}_{=0} + \underbrace{\bar{\mu}^T g(\bar{x})}_{\leq 0} \\ &\leq f(\bar{x}). \end{split}$$

Weak duality theorem

<u>Theorem</u>(Weak Duality Theorem):

Let \bar{x} be primal feasible and $(\bar{\lambda}, \bar{\mu})$ be dual feasible. Then,

 $\phi(\bar{\lambda},\bar{\mu}) \le f(\bar{x}).$

Corollary 1:

$$\begin{split} \inf_{x\in\mathscr{F}} f(x) &\geq \sup_{(\lambda,\mu)\in\mathscr{D}} \phi(\lambda,\mu) \\ \text{where } \mathscr{F} = \{x\in X \mid g(x) \leq 0, \text{ and } h(x) = 0\}, \\ \mathscr{D} = \{(\lambda,\mu) \mid \lambda \in E^m, \mu \in E^p_+\}. \end{split}$$

Corollary 2:

Let \bar{x} be primal feasible and $(\bar{\lambda}, \bar{\mu})$ be dual feasible. If $f(\bar{x}) = \phi(\bar{\lambda}, \bar{\mu})$, then \bar{x} solves (P) and $(\bar{\lambda}, \bar{\mu})$ solves (LD).

Corollary 3:

If $\sup_{(\lambda,\mu)\in\mathscr{D}}\phi(\lambda,\mu) = +\infty$, then (P) is infeasible.

Corollary 4:

If $\inf_{x \in \mathscr{F}} f(x) = -\infty$, then $\phi(\lambda, \mu) = -\infty$ for any $\mu \ge 0$.

Property 2 – concavity and subgradient

Let $X \in E^n$ be nonempty and compact, f, g, h be continuous. Then,

(a)
$$\phi(\lambda, \mu) = \inf_{x \in X} \{ f(x) + \lambda^T h(x) + \mu^T g(x) \}$$

is well defined on $E^m \times E^p_+$.

(b) $\phi(\lambda,\mu)$ is concave over $E^m \times E^p_+$.

<u>Proof</u>: Given any $\omega \in (0, 1)$, $\phi(\omega\bar{\lambda} + (1 - \omega)\bar{\lambda}, \omega\bar{\mu} + (1 - \omega)\bar{\mu})$ $\geq \omega\phi(\bar{\lambda}, \bar{\mu}) + (1 - \omega)\phi(\bar{\lambda}, \bar{\mu}).$ (c) Given any $(\bar{\lambda}, \bar{\mu}) \in E^m \times E^p_+$, define $X(\bar{\lambda}, \bar{\mu}) \triangleq \{\bar{x} \in X \mid \bar{x} \text{ minimizes}$ $f(x) + \bar{\lambda}^T h(x) + \bar{\mu}^T g(x) \text{ over } X\}.$ Then $X(\bar{\lambda}, \bar{\mu}) \neq \phi$ in our setting. (d) For any $\bar{x} \in X(\bar{\lambda}, \bar{\mu})$,

$$\begin{split} \phi(\lambda,\mu) &= \inf_{x \in X} \{f(x) + \lambda^T h(x) + \mu^T g(x)\} \\ &\leq f(\bar{x}) + \lambda^T h(\bar{x}) + \mu^T g(\bar{x}) \\ &= \underline{f(\bar{x})} + (\lambda - \bar{\lambda})^T h(\bar{x}) + (\mu - \bar{\mu})^T g(\bar{x}) \\ &\quad + \underline{\bar{\lambda}^T h(\bar{x}) + \bar{\mu}^T g(\bar{x})} \\ &= \underline{\phi(\bar{\lambda},\bar{\mu})} + (\lambda - \bar{\lambda})^T h(\bar{x}) + (\mu - \bar{\mu})^T g(\bar{x}). \end{split}$$

 $\Rightarrow \begin{pmatrix} h(\bar{x}) \\ g(\bar{x}) \end{pmatrix} \text{ is a subgradient of } \phi \text{ at} \\ (\bar{\lambda}, \bar{\mu}).$

(e) If $X(\bar{\lambda}, \bar{\mu})$ is singleton, and $\bar{x} \in X(\bar{\lambda}, \bar{\mu})$, then ϕ is differentiable at $(\bar{\lambda}, \bar{\mu})$ and

$$\nabla \phi(\bar{\lambda},\bar{\mu}) = \left(\begin{array}{c} h(\bar{x}) \\ g(\bar{x}) \end{array} \right)$$

Property 3 – duality gap

Duality gap may exist

Example 1:

Minimize $f(x) = x^3$ s. t. h(x) = x - 1 = 0 $x \in E^1$.

- (a) f is not convex.
- (b) $x^* = 1$ and $v^* = f(x^*) = 1$.

(c)
$$\phi(\lambda) = \inf_{x \in R} \{x^3 + \lambda(x-1)\}$$

$$= \inf_{x \in R} \{x^3 + \lambda x - \lambda\}$$
$$= \begin{cases} -\infty, & \lambda > 0\\ -\infty, & \lambda = 0 \end{cases}$$

$$\left(\begin{array}{cc} -\infty \end{array}, \quad \lambda < 0 \end{array} \right).$$

- (e) Can you check the local behavior of $\phi(\lambda)$ around $x^* = 1$ and $\lambda^* = -3$?
- (d) $\phi(\lambda^*) = -\infty \neq f(x^*) = 1.$

Example of duality gap

Example 2 (Bazaraa/Sherali/Shetty p. 205-206)

(P) Minimize
$$f(x) = -2x_1 + x_2$$

s. t. $h(x) = x_1 + x_2 - 3 = 0$
 $x \in X = \left\{ \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 4 \end{pmatrix}, \begin{pmatrix} 4 \\ 4 \end{pmatrix}, \begin{pmatrix} 4 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \end{pmatrix} \right\}$

(d)
$$\phi(\lambda) = \min_{x \in X} \{-2x_1 + x_2 + \lambda(x_1 + x_2 - 3)\}$$

=
$$\begin{cases} -4 + 5\lambda, & \text{if } \lambda \leq -1\\ -8 + \lambda, & \text{if } -1 \leq \lambda \leq 2\\ -3\lambda, & \text{if } \lambda \geq 2. \end{cases}$$

(a) X is compact, but not convex.

(b) Only
$$\begin{pmatrix} 1\\2 \end{pmatrix}$$
 and $\begin{pmatrix} 2\\1 \end{pmatrix}$ are feasible.
(c) $x^* = \begin{pmatrix} 2\\1 \end{pmatrix}$ with $v^* = f(x^*) = -3$.

(e) $\lambda^* = 2$ with $\phi(\lambda^*) = -6 \neq -3 = f(x^*)$!!

Property 4 – strong duality

Duality gap vanishes only under proper conditions — Strong Duality Theorem

• <u>Theorem</u>: (Bazaraa/Sherali/Shetty p.208)

Assume that

- (i) $X \neq \emptyset$ and is convex;
- (ii) f, g are convex and h is affine;
- (iii) (CQ) There exists $\bar{x} \in X$ such that
 - (a) $g(\bar{x}) < 0$,
 - (b) $h(\bar{x}) = 0$,
 - (c) $0 \in int[h(X) \triangleq \{h(x) | x \in X\}].$

Then,

$$\inf_{x \in \mathscr{F}} f(x) = \sup_{(\lambda,\mu) \in \mathscr{D}} \phi(\lambda,\mu).$$

Moreover, if the inf is finite, then $\sup_{(\lambda,\mu)\in\mathscr{D}}\phi(\lambda,\mu)$ is achieved at an $(\bar{\lambda},\bar{\mu})$ with $\bar{\mu} \geq 0$. If the inf is achieved at \bar{x} , then $\bar{\mu}^T g(\bar{x}) = 0$.

Geometric interpretation of LD

Consider a case with only one inequality constraint:

 $\begin{array}{lll} \min & f(x) & \max & \phi(\mu) \\ (P) & \text{s.t.} & g_1(x) \leq 0 & \text{s.t.} & \mu \geq 0 & (LD) \\ & x \in X & \phi(\mu) = \inf_{x \in X} \{f(x) + \mu g_1(x)\} \end{array}$

Let

$$G \triangleq \{(y,z)|y = g_1(x), z = f(x) \text{ for some } x \in X\}.$$

 (P) says that "on the (y, z) plane, we are looking for a point in G with y ≤ 0 and a minimum ordinate."

2.
$$\phi(\mu) = \inf_{x \in X} \{\underbrace{f(x) + \mu g_1(x)}_{z + \mu y}\}$$

Note that the contour of

$$\alpha = z + \mu y$$

is a line in the (y, z) plane with slope $= -\mu$ (≤ 0) and intercept $= \alpha$ on the z axis.

- 3. (LD) says that we should find the slope of the supporting hyperplane such that its intercept on the z axis is maximum.
- 4. When X is convex and f, g are convex, G must be convex. Its supporting hyperplane satisfies that

$$\phi(\mu^*) = z^* + \underbrace{\mu^* y^*}_{=0}$$
$$= z^* = f(x^*).$$

Picture of duality gap

Duality Gap

Full Lagrangian dual

Minimize $f(x) = x^3$ s.t. $-1 \le x \le 1$ $x \in E^1$

Easy to observe $x^* = -1$, $f(x^*) = -1$.

Full Lagrangian dual

- Let $X = \{x \in E^1\}$.
- $\phi(\mu) = \inf_{x \in E^1} [x^3 + \mu_1(x 1) + \mu_2(-x 1)]$ for $\mu_1, \mu_2 \ge 0$.
- $\phi(\mu) = -\infty$ because $x^3 + \mu_1(x-1) + \mu_2(-x-1) \rightarrow -\infty$ as $x \rightarrow -\infty$.

Partial Lagrangian dual (1)

Minimize $f(x) = x^3$ s.t. $-1 \le x \le 1$ $x \in E^1$

We know $x^* = -1, f(x^*) = -1.$

Partial Lagrangian dual (1):

• Let $X = \{x \in E^1 | x \ge -1\}.$

•
$$\phi(\mu) = \inf_{x \ge -1} [x^3 + \mu(x - 1)]$$
 for $\mu \ge 0$.

• $x^* = -1$ because $x^3 + \mu(x - 1)$ is increasing w.r.t. x.

 $\bullet \phi(\mu) = -1 - 2\mu.$

Dual: Maximize $\phi(\mu) = -1 - 2\mu$ s.t. $\mu \ge 0$ $\mu^* = 0, \ \phi(\mu^*) = -1.$

Partial Lagrangian dual (2)

Minimize $f(x) = x^3$ s.t. $-1 \le x \le 1$ $x \in E^1$

We know $x^* = -1$, $f(x^*) = -1$.

Partial Lagrangian dual (2):

- Let $X = \{x \in E^1 | x \le 1\}.$
- $\phi(\mu) = \inf_{x \le 1} [x^3 + \mu(-x 1)]$ for $\mu \ge 0$.
- $\phi(\mu) = -\infty$ because $x^3 + \mu(-x 1) \rightarrow -\infty$ as $x \rightarrow -\infty$.

Lagrangian dual of LP

Example 1 (Linear Programming)

(P) minimize $c^T x$ (B) s.t. Ax = b $x \ge 0$

Let
$$X = \{x \in E^n \mid x \ge 0\}$$
.
 $\phi(\lambda) \triangleq \inf_{x \ge 0} \{c^T x + \lambda^T (b - Ax)\}$ maximize $\phi(\lambda) = b^T \lambda$
 $= \lambda^T b + \inf_{x \ge 0} \{(c^T - \lambda^T A)x\}$ (LD) s.t. $A^T \lambda \le c$
 $= \begin{cases} \lambda^T b, & \text{if } c^T - \lambda^T A \ge 0, \\ -\infty, & \text{otherwise.} \end{cases}$ $\lambda : \text{unrestricted}$

Lagrangian dual of QP

Example 2 (Quadratic Programming)

(QP) minimize $\frac{1}{2}x^TQx + c^Tx$ (QP) s.t. $Ax \le b$

where Q is positive semi-definite.

Let $X = E^n$.

$$\phi(\mu) \triangleq \inf_{x \in E^n} \underbrace{\{\frac{1}{2}x^T Q x + c^T x + \mu^T (A x - b)\}}_{\text{conver for any given } \mu}$$

convex for any given μ

The necessary and sufficient conditions for a minimum is that

$$Qx + A^T \mu + c = 0.$$

(LD) maximize $\frac{1}{2}x^TQx + c^Tx + \mu^T(Ax - b)$ (LD) s.t. $Qx + A^T\mu + c = 0$ $\mu \ge 0.$

Lagrangian dual of QP

Since $c^T x + \mu^T A x = -x^T Q x$, we have

(Dorn's Dual) maximize
$$-\frac{1}{2}x^TQx - b^T\mu$$

(Dorn's Dual) s.t. $Qx + A^T\mu = -c$
 $\mu \ge 0.$

When Q is positive definite, then

$$x^* = -Q^{-1}(c + A^T \mu)$$

and

$$\begin{split} \phi(\mu) &= \frac{1}{2} [Q^{-1}(c + A^T \mu)]^T Q [Q^{-1}(c + A^T \mu)] \\ &- c^T Q^{-1}(c + A^T \mu) \\ &+ \mu^T (-AQ^{-1}(c + A^T \mu) - b) \\ &= \frac{1}{2} \mu^T \underbrace{(-AQ^{-1}A^T)}_{D: \text{ negative definite}} \mu + \mu^T \underbrace{(-b - AQ^{-1}c)}_{d} \\ &- \frac{1}{2} c^T Q^{-1} c \end{split}$$

maximize $\frac{1}{2}\mu^T D\mu + \mu^T d - \frac{1}{2}c^T Q^{-1}c$ (LD) s.t. $\mu \ge 0$.

Saddle point solution

(NLP) s.t.

$$\begin{cases} g(x) \leq 0 \\ h(x) = 0 \\ x \in X \end{cases}$$
Lagrangian function

$$\ell(x, \mu, \lambda) \triangleq f(x) + \mu^T g(x) + \lambda^T h(x).$$

 $(\bar{x}, \bar{\mu}, \bar{\lambda}) \in E^{n+m+p} \text{ is called a <u>saddle point</u>} (\underline{solution}) \text{ of } \ell(x, \mu, \lambda) \text{ if}$ (i) $\bar{x} \in X$,
(ii) $\bar{\mu} \ge 0$,
(iii) $\ell(\bar{x}, \lambda, \mu) \le \ell(\bar{x}, \bar{\mu}, \bar{\lambda}) \le \ell(x, \bar{\mu}, \bar{\lambda})$, $\forall x \in X, \ \mu \in E^p_+, \ \lambda \in E^m$.

Saddle point and duality gap

 Basic idea : The existence of a saddle point solution to the Lagrangian function is a necessary and sufficient condition for the absence of a duality gap!

Theorem 1:

Let $\bar{x} \in X$ and $\bar{\mu} \ge 0$. Then, $(\bar{x}, \bar{\mu}, \bar{\lambda})$ is a saddle point solution to $\ell(x, \mu, \lambda)$ if and only if

(a)
$$\ell(\bar{x}, \bar{\mu}, \bar{\lambda}) = \min_{x \in X} \ell(x, \bar{\mu}, \bar{\lambda}),$$

(b) $g(\bar{x}) \leq 0$ and $h(\bar{x}) = 0,$
(c) $\bar{\mu}^T g(\bar{x}) = 0.$

Proof

Proof: (Part 1)

Let $(\bar{x}, \bar{\mu}, \bar{\lambda})$ be a saddle point solution.

By definition, we know (a) holds.

Moreover,

$$\begin{split} f(\bar{x}) + \bar{\mu}^T g(\bar{x}) + \bar{\lambda}^T h(\bar{x}) &\geq f(\bar{x}) + \mu^T g(\bar{x}) + \lambda^T h(\bar{x}), \\ \forall \ \mu \in E^p_+, \ \lambda \in E^m. \end{split}$$

This implies that $g(\bar{x}) \leq 0$ and $h(\bar{x}) = 0$, otherwise the right-hand-side may go unbounded above. This proves (b).

Now, let $\mu = 0$, the above inequality becomes

$$\bar{\mu}^T g(\bar{x}) \ge 0.$$

However, $\bar{\mu} \ge 0$ and $g(\bar{x}) \le 0$ imply that

$$\bar{\mu}^T g(\bar{x}) \le 0.$$

Hence $\bar{\mu}^T g(\bar{x}) = 0$. This proves (c).

(Part 2)

Suppose that $(\bar{x}, \bar{\mu}, \bar{\lambda})$ with $\bar{x} \in X$ and $\bar{\mu} \ge 0$ such that (a),(b),(c) hold. Then, by (a)

 $\ell(\bar{x},\bar{\mu},\bar{\lambda}) \le \ell(x,\bar{\mu},\bar{\lambda}), \ \forall \ x \in X.$

By (b)and (c)
$$\begin{split} \ell(\bar{x},\bar{\mu},\bar{\lambda}) &= f(\bar{x}) + \bar{\mu}^T g(\bar{x}) + \bar{\lambda}^T h(\bar{x}) = f(\bar{x}) \\ &\geq f(\bar{x}) + \mu^T g(\bar{x}) + \lambda^T h(\bar{x}) \\ &= \ell(\bar{x},\mu,\lambda) \\ \end{split}$$
with $\mu \in E^p_+$ and $\lambda \in E^m$.

Hence $(\bar{x}, \bar{\mu}, \bar{\lambda})$ is a saddle point solution.

Saddle point theorem

<u>Theorem 2</u>:

 $(\bar{x}, \bar{\mu}, \bar{\lambda})$ is a saddle point solution of $\ell(x, \mu, \lambda)$ if and only if \bar{x} is a primal optimal solution, $(\bar{\mu}, \bar{\lambda})$ is a dual optimal solution and $f(\bar{x}) = \phi(\bar{\mu}, \bar{\lambda}).$

Proof: (Part 1)

Let $(\bar{x}, \bar{\mu}, \bar{\lambda})$ be a saddle point solution of $\ell(x, \mu, \lambda)$.

By (b) of Theorem 1, \bar{x} is primal feasible. Since $\bar{\mu} \ge 0$, $(\bar{\mu}, \bar{\lambda})$ is dual feasible. Combing (a), (b), and (c), we have

$$\begin{split} \phi(\bar{\mu},\bar{\lambda}) &= \ell(\bar{x},\bar{\mu},\bar{\lambda}) \\ &= f(\bar{x}) + \bar{\mu}^T g(\bar{x}) + \bar{\lambda}^T h(\bar{x}) \\ &= f(\bar{x}). \end{split}$$

By the Weak Duality Theorem, we know that \bar{x} is primal optimal and $(\bar{\mu}, \bar{\lambda})$ is dual optimal. (Part 2)

Let \bar{x} and $(\bar{\mu}, \bar{\lambda})$ be optimal solutions to (P) and (D), respectively, with

 $f(\bar{x}) = \phi(\bar{\mu}, \bar{\lambda}).$

Hence, we have $\bar{x} \in X$, $g(\bar{x}) \leq 0$, $h(\bar{x}) = 0$ and $\bar{\mu} \geq 0$. Moreover,

$$\begin{split} \phi(\bar{\mu},\bar{\lambda}) &\triangleq \inf_{x \in X} \{f(x) + \bar{\mu}^T g(x) + \bar{\lambda}^T h(x)\} \\ &\leq f(\bar{x}) + \bar{\mu}^T g(\bar{x}) + \bar{\lambda}^T h(\bar{x}) \\ &= f(\bar{x}) + \bar{\mu}^T g(\bar{x}) \\ &\leq f(\bar{x}) \end{split}$$

But $\phi(\bar{\mu}, \bar{\lambda}) = f(\bar{x})$ is given, the inequalities become equalities. Hence $\mu^T g(\bar{x}) = 0$ and

$$\begin{split} \ell(\bar{x},\bar{\mu},\bar{\lambda}) &= f(\bar{x}) = \phi(\bar{\mu},\bar{\lambda}) \\ &= \underset{x \in X}{\text{minimum}} \ \ell(x,\bar{\mu},\bar{\lambda}) \end{split}$$

By Theorem 1, we know $(\bar{x}, \bar{\mu}, \bar{\lambda})$ is a saddle point solution to $\ell(x, \mu, \lambda)$.

Saddle point and KKT conditions

Question:

How does saddle point optimality relate to the K-K-T conditions?

Theorem 3:

Let $\bar{x} \in \mathscr{F}$ satisfies the K-K-T conditions with $\bar{\mu} \in E^p_+$ and $\bar{\lambda} \in E^m$.

Suppose that $f, g_i \ (i \in I(\bar{x}))$ are convex at \bar{x} , and that h_i is affine for those with $\bar{\lambda}_i \neq 0$.

Then, $(\bar{x}, \bar{\mu}, \bar{\lambda})$ is a saddle point of $\ell(x, \mu, \lambda)$.

Conversely, let $(\bar{x}, \bar{\mu}, \bar{\lambda})$ be a saddle point solution of $\ell(x, \mu, \lambda)$ with $\bar{x} \in \text{int } X$. Then \bar{x} is primal feasible and $(\bar{x}, \bar{\mu}, \bar{\lambda})$ satisfies the K-K-T conditions.

Proof

(Part 1)

Let $\bar{x} \in \mathscr{F}$, $\bar{\mu} \in E^p_+$, $\bar{\lambda} \in E^m$ and $(\bar{x}, \bar{\mu}, \bar{\lambda})$ satisfies the K-K-T conditions, i.e.,

$$\nabla f(\bar{x}) + \bar{\mu}^T \nabla g(\bar{x}) + \bar{\lambda}^T \nabla h(\bar{x}) = 0$$
$$\bar{\mu}^T g(\bar{x}) = 0.$$

By convexity and linearity of f, g_i and h_j , we have

$$\begin{array}{ll} f(x) \ \ge f(x) \ + \nabla f(x)(x - x), \\ g_i(x) \ \ge g_i(x) \ + \nabla g_i(x)(x - x), & i \in I(x) \ , \\ h_j(x) = h_j(x) + \nabla h_j(x)(x - x), & j = 1, \cdots, m, \ \bar{\lambda}_j \neq 0 \ , \end{array}$$
for $x \in X$.

Multiplying the second inequality by $\bar{\mu}_i$ and the third inequality by $\bar{\lambda}_j$, adding to the first inequality, and noting (*), it follows from the definition of ℓ that

$$\ell(x,\bar{\mu},\bar{\lambda}) \ge \ell(\bar{x},\bar{\mu},\bar{\lambda}), \ \forall \ x \in X.$$

Moreover, since $g(\bar{x}) \leq 0$, $h(\bar{x}) = 0$ and $\bar{\mu}^T g(\bar{x}) = 0$, we have $\ell(\bar{x}, \mu, \lambda) \leq \ell(\bar{x}, \bar{\mu}, \bar{\lambda})$ for $\mu \in E^p_+$ and $\lambda \in E^m$. Hence $(\bar{x}, \bar{\mu}, \bar{\lambda})$ is a saddle point solution.

(Part 2)

Suppose that $(\bar{x}, \bar{\mu}, \bar{\lambda})$ with $\bar{x} \in \text{int } X$ and $\bar{\mu} \ge 0$ is a saddle point solution. Since $\ell(\bar{x}, \mu, \lambda) \le \ell(\bar{x}, \bar{\mu}, \bar{\lambda})$ for $\mu \in E^p_+$ and $\lambda \in E^m$. Like in Theorem 1 (Part 1), we have $g(\bar{x}) \le 0, \ h(\bar{x}) = 0$ and $\bar{\mu}^T g(\bar{x}) = 0$.

Hence \bar{x} is primal feasible. Moreover \bar{x} is a primal optimal solution because $\ell(\bar{x}, \mu, \lambda) \leq \ell(\bar{x}, \bar{\mu}, \bar{\lambda})$ for $x \in X$.

Since $\bar{x} \in \text{int } X$, we have $\nabla_x \ell(\bar{x}, \bar{\mu}, \bar{\lambda}) = 0$, i.e.,

$$\nabla f(\bar{x}) + \bar{\mu}^T \nabla g(\bar{x}) + \bar{\lambda}^T \nabla h(\bar{x}) = 0$$

This completes the proof.

Any real number x can be uniquely expressed as

$$x = x^+ - x^-,$$

where $x^+ \ge 0$, $x^- \ge 0$ and $x^+ \cdot x^- = 0$.

Consider a standard form NLP:

min
$$f(x)$$

s.t. $g_i(x) \le 0, i = 1, ..., m$
 $h_j(x) = 0, j = 1, ..., p$
 $x \in E_+^n$

Conjugate dual (CD)

$$S \triangleq \{ \mathbf{x} \in E^n | \mathbf{g}(\mathbf{x}) \leq \mathbf{0}, \mathbf{h}(\mathbf{x}) = \mathbf{0} \}$$

$$\mathcal{X} \triangleq E^n_+$$

$$\mathcal{h}(\mathbf{y}) \triangleq \sup_{\mathbf{x} \in S} \{ \mathbf{x}^T \mathbf{y} - f(\mathbf{x}) \}, \forall \mathbf{y} \in \Omega$$

$$\Omega \triangleq \{ \mathbf{y} \in E^n | \sup_{\mathbf{x} \in S} \{ \mathbf{x}^T \mathbf{y} - f(\mathbf{x}) \}, < \infty \}$$

$$\mathcal{Y} \triangleq dual(\mathcal{X}) = E^n_+$$

(CD)
$$\begin{array}{l} \min \, h(y) \\ s.t. \ y \in \Omega \\ y \in E_{+}^{n} \end{array}$$

Lagrangian dual (LD)

 $\min f(\mathbf{x})$ s.t. $g(\mathbf{x}) \le \mathbf{0}$ $h(\mathbf{x}) = \mathbf{0}$ $-x_i \le 0, i = 1, ..., n$

Let $S \triangleq \{x \in E^n | g(x) \le 0, h(x) = 0\}$ for partial Lagrangian:

(Partial LD) $\max \phi(\lambda) \triangleq \inf_{x \in S} \{f(x) + \lambda^{T}(-x)\}$ $s.t. \ \lambda \ge 0$

when $\inf_{x \in S} \{f(x) + \lambda^{T}(-x)\}$ exists.

Lagrangian dual (LD)

(Partial LD)
$$\max \phi(\lambda) \triangleq \inf_{x \in S} \{f(x) + \lambda^{T}(-x)\}$$
$$s.t. \ \lambda \ge 0$$

Notice that

$$\phi(\lambda) = \inf_{x \in S} \{f(x) + \lambda^{\mathrm{T}}(-x)\} > -\infty$$
$$= (-) \{ \sup_{x \in S} \{\lambda^{\mathrm{T}}x - f(x)\} < \infty \}$$
$$= (-) h(\lambda)$$

if and only if $\lambda \in \Omega$.

$$\begin{array}{rcl} \max & (-) \mathcal{h}(\lambda) & (-) \min \, \mathcal{h}(y) \\ \bullet \text{ (Partial LD)} & \begin{array}{c} s.t. \ \lambda \in \Omega \\ \lambda \in E_{+}^{n} \end{array} & = \begin{array}{c} s.t. \ y \in \Omega \\ y \in E_{+}^{n} \end{array} & (-)(\text{CD}) \end{array}$$