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THE SIMPLEX METHOD FOR QUADRATIC PROGRAMMING 

BY PHILIP WOLFE 

A computational procedure is given for finding the minimum of a quadratic 
function of variables subject to linear inequality constraints. The procedure 
is analogous to the Simplex Method for linear programming, being based on 
the Barankin-Dorfman procedure for this problem. 

1. INTRODUCTION 

IN THIS PAPER, by "quadratic programming" we shall understand the 
problem of determining values of several real variables, subject to linear 
inequality constraints, which yield the extreme value of a quadratic function. 
Besides being a step on the way toward solution of the elaborate nonlinear 
programming problems which economic models often present, a usable com- 
putational procedure for quadratic programming can be applied to a number 
of problems of interest in themselves: 

Regression. To find the best least-squares fit to given data, where certain 
parameters are known a priori to satisfy inequality constraints (e.g., being 
nonnegative). 

Efficient production. Maximization of profit, assuming linear production 
functions and linearly varying marginal costs. 

"Portelolio" problem.' To find a combination of random variables having 
given expectation and minimum variance. 

Convex programming. To find the minimum of a general convex function 
under linear constraints using a quadratic approximation. 

Let the variables of the problem constitute the n-vector x = (xi, .,x.)' 
(' will denote transposition; we take x to be a column vector, that is, an 
n by 1 matrix). Letting A be an m by n matrix, and b an m by 1, we shall 
express the linear constraints of the problem by 

(1) x>O, Ax b, 

that is, x ?0 (> - 1 .,n), ZXnI aijx= bi (i - 1, . . 

We recall that any combination of linear equation and inequality constraints 
can be written in the form (1) if additional variables are allowed into the 
problem. 

Let p be a 1 by n matrix, and C be an n by n symmetric matrix. We shall 
write the objective function, the (partly) quadratic function to be extremized 
subject to (1), as 

(2) I(2,x) - A px -1 1/2 x'Cx, 

I)ue to Markowitz [6]. 
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or /(A,x) = E j 1jxj + 1/2 J,k XjCjkXk, 

where A, a single nonnegative real parameter, can be chosen as convenient. 
The problem can now be stated as: 

The quadratic problem for A > 0: 

(3) Minimize /(A,x) =Ax + 1/2 x'Cx subject to x > 0, Ax b. 

An important restriction must be placed on the quadratic part, C, of the 
objective function in order to ensure the success of the computational method: 
the function / must be convex, that is, C must be positive semidefinite. This 
condition apparently essential, in the present state of the art, to all non- 
linear programming schemes ensures that any local minimum encountered 
in the problem will be the global solution desired. Algebraically, the assertion 
of positive semidefiniteness for C is that 

(4) x'Cx > 0 for all x. 

In economic problems, it is the ascription of nonincreasing returns to scale 
for all activities, since the marginal cost of changing from the program x to 
the program x + Ax is given by 

d t(A,x + t Ax) = x A- xC Ax -F tAx'C A4ax, 

which will be a nondecreasing function of t. We shall assume it from now on. 
A more detailed discussion of the role of this property in quadratic program- 
ming is given in [4]. 

A number of proposals for the computational solution of quadratic pro- 
gramnming problems have been made in the last two years; those which seem 
suited to high-speed digital computers are given in References [1]--[6] below. 
Barankin and Dorfman [1] first pointed out the linear formulation of the 
quadratic problem, inspiring the present approach; our Section 2 is taken, 
with changed notation, from Sections 1 and 3 of [1]. 

The principal respect in which the present method differs from these is 
in using only the computational mechanisms of the Simplex Method for 
linear programming problems. It is therefore a simple matter to convert a 
computing machine code for linear programming into one for quadratic 
programming; the SHARE linear programming code for the IBM 704 re- 
quires modification in eleven instructions for this purpose. 

In the sequel this method is developed in two forms, "short" and "long." 
The computations of the long form are like those of the short, but are aimed 
at solving the quadratic problem (3) for all A > 0 and at the same time avoid- 
ing certain restrictions on the use of the short form. The table below summa- 
rizes the conditions for use of these methods. The estimate of the number 
of Simplex Method changes-of-basis needed to solve the problem is based 
on experience like that described in Section 6. 
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Solution of (3) by: Short Form Long Form 

Either A = O or C .. . 
Conditions E . . C positive semidefinite 

positive definite 

Solution obtained for fixed A all A > 0 

Size of equivalent linear up to m + n equations, up to m + n equations, 
program m + 3n variables m + 3n + 1 variables 

Estimated number of 
basis changes for solution 

2. PRELIMINARIES 

Since we are interested, in part, in the solution of the quadratic problem 
for all A > 0, let us define 

for A > 0: F(A) - Min{IApx + 1/2 x'Cx : x > 0, Ax -- b}. 

Quite a bit of information about F(A) can be obtained without calculating 
it. Throughout it will be assumed, of course, that there exist feasible x, i.e., 
x > 0 such that Ax b. Nevertheless, we may have F(A) -ao for some 
(and hence all) A > 0. 

First, an important feature of the positive semidefiniteness of C is given by 

LEMMA 1. x'Cx 0 implies Cx = 0. 

PROOF. For any n-vector y we have 
0 < (y + tx)'C(y + tx) y'Cy + 2 ty'Cx for any numbert, whence y'Cx- 0; 
Cx - 0 follows at once. 

This leads to 

LEMMA 2. For any A > 0, the "solution set" of all feasible x such that f(A,x) 
F(A) is the intersection of a linear manifold with the constraint set, and px is 
constant on this set for A > 0. 

PROOF. Let feasible points x, y be given such that f(A,x) f(A,y) F(A). 
Letting w y-x, for any 0 < t < 1 the point x + tw belongs to the con- 
straint set; since f is convex, and f(A, x + tw) is minimal for t 0 and t = 1, 
wehavef(), x + tw) f (A,x)forall0 < t < 1,or)Ap(x + tw) + 1/2(x + tw)' 
C(x + tw) = Apx + 1/2 x'Cx, which simplifies to (Apw + x'Cw)t + 1/2 
w'Cw t2 - 0 [O < t < 1]. Thus w'Cw 0, whence by Lemma 1 

(5) Cw 0, and hence 

PW =0. 
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Conversely, it is clear that if f(A,x) = F(A), if w satisfies (5), and if x + tw 
is feasible, then f/(, x + tw) = F(), so that the complete solution set for ) 
given is the intersection of the constraint set with the linear manifold 
{ x + tw}. Equation (5) yields finally px py for any two solutions. 

If now for any A > 0 we choose a feasible solution XA such that /(f,xk) 
F(A), then by Lemma 2 the value PxA is independent of the choice of XA. 

THEOREM 1. For A > 0, F(A) is a concave function; PxA is monotone non- 
increasing; and XA is a solution y of the problem: 

Min{y'Cy :y >0, Ay b, py <PxA}. 

PROOF. Since fo(A, x) is linear in A, the function F(A) is the infimum of a 
family of linear functions, and hence concave. 

The trend of PxA is an instance of a quite general fact. Take any A and P. 
Since XA minimizes f(A,x), we have 

ApPXx + 1/2 x, CxA < APxIS + 1/2 x, CxIS; 

and since xIS minimizes f(,,x), we have 

Ipx,I + 1/2x, Cx,I < IIpxx + 1/2 xA CxA. 

Adding these inequalities and rearranging, we get 

-A) Px/j <? (- A)PxA, 
which yields Pxl,S < PxA for > A. 

Finally, since xA does minimize Apx + 1/2 x'Cx, any y such that y'Cy < 

x',Cx, will give py > PxA,, which proves the last statement. 

The next theorem characterizes xA in such a way that we will be able to 
compute it. Only the sufficiency of this condition for the minimization of 

f(A,x) is needed, since its necessity will follow when we have established that 
results of the computational scheme of the next section meet this condition 
if the minimum exists. 

THEOREM 2. If x > 0, Ax = b, and there exist v > 0 (v is n by 1) and u 

(u is m by 1) such that 

(6) v'x 0 

and 

(7) Cx- v + A'u? + AP' O0, 

then x solves the problem Min {Apx + 1/2 x'Cx: x > 0, Ax = b}. 



386 PHILIP WOLFE 

PROOF. Let any y > 0, Ay bbegiven. We shallshowthatf( ,y) >f(A,x). 
Froin the positive semidefiniteness of C we have 

(y--x)'C(y---x) >0, 

whence y'Cy + x'Cx > 2 x'Cy 

or y'Cy x'Cx > 2 x'C(y x) 

so that 

(),y) --/(),x) -- 
)Lx(yR -x) )+ 1/2 y'Cy 1/2 x'Cx > (A - + x'C)(y--x). 

Since by (7) AP + x'C - - u'A, 

(L,y) -- /~(,X) > v'y v'x u'Ay + u'Ax -- v'y 0 u'b + u'b (by (6) 
and feasibility) v'y > 0 (since v,y > 0). 

The coinditions (6) and (7) especially as necessary, rather than sufficient, 
conditions are essentially those of the "saddlepoint" theorem of Kuhn and 
Tucker [9]. In the present form, the result is due to Barankin and Dorfman 
[1, Section 3]. The theorem in fact obtains if /(f, x) is replaced by any convex 
differentiable function and Cx + AP' of (7) is replaced by its gradient. 

The remarkable feature of the quadratic problem is the linearity of the 
gradient of /I(,x), which confines the nonlinearity of the Kuhn-Tuckner 
conditions to the relation (6), v'x 0, which has this sort of combinatorial 
expression: 

(8) vj > 0 implies xj 0 (j - . . 

In order to explore the relation of the constraints (8) to the linear relations 
(7), and see how they may be handled numerically, we must consider briefly 
the main features of the simplex Method for linear programming [7]. 

It is required to minimize the linear form cx under the constraints Dx e, 
x > 0 (D is p by q, c is 1 by q, e is p by 1). We suppose this problem is feasible, 
i.e., the existence of an x satisfying the constraints. It is easy to show through 
linear dependence that there exists a feasible x having no more than p positive 
components. A collection of p columns from D which correspond to the non- 
vanishing components of a feasible x is called a basis, and x is called a basic 
solution. In the Simplex Method one works always with such bases; given 
any, it is shown that either (i) the associated basic solution yields the mini- 
mum value of the linear form, or (ii) another basis differing in only one column 
from the given basis can be found whose associated basic solution yields a 
smaller value for the form, or (iii) one column can be adjoined to the basis 
such that a sequence of feasible x's associated with these p + 1 columns can 
be found on which cx-> --oo. Thus a sequence of bases is generated which 
terminates in either a finite or infinite solution of the problem. It is con- 
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venient to make an assumption of "nondegeneracy" regarding the constraints 
of the problem: That any feasible vector x has at least p positive components. 
A consequence of this assumption is the linear independence of the columns 
of any basis. It has been shown [7] that every set of constraints can be dealt 
with so as to be nondegenerate. In the sequel we rely on these results, assum- 
ing nondegeneracy in the few places it is necessary. 

Returning to the quadratic problem, the conditions that the n-vector x 
solve the quadratic problem for . > 0 may be written together as (omitting 
for the moment v'x - 0) 

Ax - b, 
Cx-v + A'u + P' - 0, 
x >0 , v > 0, 

or in detached coefficient form as 

(9) x>0 v>0 i A 

A 0 0 0 b 
C -I A' P' = 

constituting mi + n equations in 2 i nonnegative variables and m unrestricted 
variables (A is not considered a variable). We shall be concerned below with 
the basic solutions of this system. Note that the M columns associated with 
the unrestricted variable it are taken to be in every basis (this technical 
device makes it unnecessary algebraically to eliminate the U's to bring the 
system to standard form), leaving only n positive variables in any basic 
solution to go to x and v. 

Assuming for the moment the converse of Theorem 2, if the quadratic 
problem has a solution, then there exist x,v,u satisfying (6) and (7). But (6) 
implies that at least n components from the 2n x and v vanish; and this 
establishes the important result of Barankin and Dorfman [1] that some 
basic solution of (9) constitutes a solution of the quadratic problem. 

Since the computational step of the Simplex Method can be used to explore 
basic solutions, Barankin and Dorfman have accordingly proposed use of 
the method, beginning with an arbitrary basic solution of (9), to reduce v'x 
to zero. One method which accomplishes this is given in [4], but it is more 
complicated, and probably slower, than the present algorithm. 

Markowitz, on the other hand, has suggested a method [6] for the "port- 
folio" problem (equivalent to solving the quadratic problem for all A > 0) 
which begins with constraints looser than (9) and which, while retaining (8) 
v'x 0, should alter the variables until (9) obtains. The method described 
here exploits this ingenious idea, differing from the proposal of [6] in keeping 
to a linear programming format. 



3. THE COMPUTATION 

Here we present the computational algorithms for the minimization of 
Apx + 1/2 x'Cx subject to x > 0, Ax b. First is given the "short form," 
for 2 fixed, whose convergence requires that either 2 0 or that C be positive 
definite; next is given the "long form," solving the quadratic problem "para- 
metrically" for all 2 > 0, which does not need C positive definite, but which 
involves two recursions of the "short form" type. 

We shall suppose below, relying on [7], that the constraints Ax = b and 
the constraints employed below are all nondegenerate. 

Short Form 

Let zl, z2, and w be respectively n-, n-, and m-component vectors. We 
begin with the set of relations 

(10) Ax + w b, 

(11) Cx-v+A'u+zl -z2 ,-p', 

(12) x, v, zl z2Y W > O, 

a weakening of the set (9). 

Initiation. Since b > 0, an initial basis for this system can be formed from 
the coefficients of zl, z2, and w. Use the simplex method to minimize 

(13) S Wi 

to zero, keeping v and u zero. Discard w and the unused components of zl, 
z2; let the remaining n components be denoted by Z, and their coefficients 
by E. We now have a solution of the system 

Ax by 
(14) Cx-v + A'u + EZ --Ap', 

x, v, Z 0. 

Recursion. Given a basis and basic solution satisfying (14), (8) v'x 0 O, and 

El' i Z1 > 0, make one change of basis in the Simplex procedure for mini- 
mizing the linear form 

(15) EZk 
k=1 

under the side condition 

(16) for k 1, ... .,n: if Xk iS in the basis, do not admit Vk; 
and if Vk is in the basis, do not admit Xk. 

Termination. If the form (15) is positive, repeat the recursive step. The 
form will vanish in at most (3n) iterations, yielding Z 0. The x-part of 
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the terminal basic solution is a solution of the quadratic programming 
problem for A. 

Long Form 

Initiation. Having performed the short form computation for 2 0, add p' 
to the short form data, obtaining the system 

(17) Ax - b, 

(18) Cx - v + A'u + uP' + EZ =0, 

and an initial solution having u - 0, Z 0, and v'x 0. 

Recursion. Given a basis and basic solution satisfying (17), (18), v'x = 0, 
and having Z 0, make one change of basis (if possible) in the Simplex 
procedure for minimizing the linear form 

(19) -f 

under the side condition (16) and 

(20) do not allow any Z1 in the basis. 

Termination. If it is not possible to make the basis change of the recursion, 
then 4u 0, F(2) -so for all A > 0, and a set of feasible x can be found 
(in Section 5) on which /(2,x)-- -o for 2 > 0. 

Otherwise the recursion will yield the finite sequence of values 0 = y0 < 
utd < ... <4uK and the x-parts xO, xl, . . .,XK of their associated basic solu- 
tions, terminating in at most (2ff) iterations with the vector x??, such that: 
for 4Uk < A < ybk+1 the quadratic problem for 2 is solved by 

(21) = /t k+1 - _ Xk + 
A - k xk+ 

and for A>2 ?uK it is solved by 

(22) x xK + (A -PK) X. 

Note. E. M. L. Beale recently communicated an elegant modification of 
the "short form" procedure above which permits its use in the case that the 
quadratic form is only positive semidefinite instead of definite. It consists 
essentially in calculating the effect of a "virtual perturbation" of C which in- 
volves replacing Cjj by Cii + y1, j = 1, . . . , for arbitrarily small 6, so 
that the algorithm can operate as if a positive definite form were employed. 

4. EXAMPLE 

As an example for calculating with both the short form and the long form, 
we shall solve the problem 
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Min l/2(x,2 + X22 + X32) + A(x- 2x3) 
subject to xl, x2, x3 > 0, xl x2 +x3 . 

The obj ective function can be written 

f(2,X) -1/2[(xi + 2)2 + X22 + (X3- 22)2] -5/2 22, 

and thus for any A the solution x will be that point of the constraint set 
closest to the point (-i, 0, 2 A). This is illustrated in Figure 1 for AL 1 

and in Figure 2 for general A > 0. 
For this problem 

A [ 1 1 1], F1 0 01 
b - [1], C- 0 1 0, 

p i1 0 21. 

. ............ 
(- 150,2)X ........... 

,'S A~~~~~~~~~~~...................... 

Minimum distance 
i........ .............................. 

- 
.. 
Bases 4 55 ............ S ~~~~~~~~~~~~~~... .. .. . .. . .. . 

s 
.. ..... 

............................................. 

Basi s 3 d 4 ....... . . 
. . ....................................... ................. ......... 

} ~~~~~~~~~.. .......... ................................... .. 

~ ~ ~ ~ ~~~~~~~~~~il................. ................................ 
#~~~~~~~~~~~~~~~~~~~~~~~~~. -. -?6. . . .. . . . . . . . . . . . . . w. R . g .w . ...e e*t0 

~~~~~~~~~~~~~.......... ...... ...... .........,,,.,,. 

B a i .. }.Bs }.e}.s}.., 

Basis2 ............................................................ ................... ......... ................. ...................................... ......... .... 
/ 

- --- . -- --------,- 

~~~~~~~~~~~~~.......... - .---------- 
X, i t., !.t., t l ''';'''' ~~~~~~~~~~~............. 

.. . ... ,, ....... ............ 
x!' .. .......... ...................... .. 

i... ............................... .......... 

..-.-----.-.------ ....... ~~~~~~~~~~~~~~~~~~............ ....... t 

i-............ i. ......... 

FIGURE~ l Short form. 
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x3 
3~~~~~~~~ 

/ ~~~xtI C,X 

J / I I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ X':.'.-".., ..............-'- -,:: 

/ x-I/ \ / /~~~~~~~~~~~~~~~~~~~~~~~~~~~~...... . -....::r:.'''..'.'. S* S' 

/ A, .^ SS l. ..I -.sss .ss.sss -. 
/ i-ss.*.sss- .. sss ssssss-ssh S--S-- SSSS SS S S S SSSS S S S .......................................... 

/ 
} ~~~~~~~~~~~~~~~~~~~~~~~~~.. . ,.......... I...... ..... ............. .. U ........ SS: xx- - --SgSiSxSSx[SI ixS ;SS SS 

Recursion .s s S s x . i 

/ =- '- 2 ' * gSSSii S:xSS S* ...... riSiiS-S.-r*r.SiSx x SiSSi iSS xii .ii Si ii ..... SiS SS~............... 

/ Bases 67 # j*E '*+ * i-g i._ i3E-iOi ii i .C7 ....................................................................::.-.....::;:-.i.......E 

.. isc.....e... .............. fo.r X given 

Si/ C isiiiiiii poisitiivdeinit,heshort foxrmi willsov tSiihe proble for ani 

TakingiiSiiiErXi )s 1,iiiiiiiiSi formulaii iSiiiiii iiiiii iiiiiiii Hiiii ssiissis (10,11) give the initial array for the short formiiiiiiiiiiiiiiiii 

X 

/ Bases 
X 

4 
V5 1)2 V3 

iiiiSHiESirigr 

U 

sRiiih 

1 15r:::iiiiiiiiii.ii.iiiiiSr 1 

iiiii55h5iii iiihi i i i ii...h.S 

Initiationi ' xx Hi xi-iiisiiiiisii-iiiiiiiiiisEississi.iiiiii+Z*iiiiiiiiiisisis ............................ . ............... . . .... .... . ......... ..........i y Aiiir iiiiihihi si-= -i Bases? 3 ................ 55iiiiiiiiiHi iiiiiiiriir i iiiiigSh ...........i ...i.ii.... . ... . ............ ................ii 

z1 z2 z3~~~~~~~~~~~~~~~~~~~~~~~~~..... 

/ A i i ri ih il.iB ii.\- O iii ii iiiiiiiiiBii iiiiiiiii ii iiiiii!iiiiiiiiiii ii-f-, n .......... ..... .............. 

1 -1 1 TTi 0 0 0TTThrisiiTirtiTr.iiiTiiii-iiiiiiiTTi"iiiiTTiiiiiTiihisiTiiiiiTTTrT'TiTiTTTiT 0 0 0 0 0 0 0 1 =.1 

1 0 0 - 1 0 0 1iThiiiTiTiiiTiT-iiiTuiT jiiTiiTTni'iiisiiTiiTrTiTiTiiiiiiiiiiiiiiiTTiTiTii.... T 1 0-1 0TiTTiTi i = -1. iTTTTTTTT TTiT 
0 1 0 0 - 1 0TiiiisTT -1T.TiTsir 0 1 0 0 - 1 0. 0T = 0hiiiiTTTTiiriTiTTriTiiTiTriiTiriTTTiirsT.riTiTTTTTiTii------------ --- ---------- .... ...........................r 

0 0 1 0 0 -1 1 0TTT 0 1T 0 0 -1 0 =2isTTiTTTThsTTTiTi iT iTTiTTT=T gsigiTiiigiTTTi iTiihTiTiiTTT iTii iTTTTT0iiiT...Tr.T.............Ti. TTTTiT.T 

iTTTi TiiisTi iiiTiTi iiiTTiiiiiiiTiiT3siiiiiiiiT iiiiiiiiiiTrrTTiiiiiiiiiiih iTiiiTiTiTTiieriTiiiTTiTiTiT...... .T............................ ...................... 
/ iii iiisiSrir iiisi rsir ii irihiiiri riiiii iihiiiiiii-i-i iiiiiii iiiiii i5iiiiiii5sEi ..............hi r . ......iiffi 

/ giiiriilhiiiiiii SiiErghiiiiErir iiii iir iiriiii ii iiiilriiiii;SiHiiiihih iriiiiih 5 iiiiiihit siiiiiiiiii iiiiiiiiiiiii.... .....iii. 

Recursion ~~~~~~~~'itgn.gigggiig.iiDDii..gga.. . .. ..: .. .. 

Since C is positivedefinite,theshort .... ...... solve Lines poble short anys A 
Taking A= 1, formulas (10,11) give the initial. .......y;fistance sor rt give 

X1 X2 X3 U1 U2 U3 M Z1 ,za zl zi z2 g W~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~....... ...... 
1-1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~.... ..............O O 1 = 

1 0 0 - 1 0 0 1 1 0 0 1 0 0 O =-1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~............ 
0 1 0 O 1 0 -1 O 1 0 O-1 0 O = O~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~......... ........ 

0 0 1 0 0 -1 1 0 0 1 0 0 -1 0 = 2~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~......... 
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Although there is considerable degeneracy in the problem, the minimization 
of E Zk proceeds without a hitch. Below are given the values of the variables 
in the successive steps (only the values of the basic variables are given). The 
variable u is introduced first, since it will be in every basis. Since it is unre- 
stricted, it might have been eliminated from the system, but we have left it in. 

Basis Xl X2 XS Vl V2 V3 U 4 4 4 4 4 4 w 2z 

0 0 21 1 
1 2 2 3 1 Initial 
2 1 2 2 4 6 
3 1 1 1 2 3 
4 1/2 3/2 1/2 3/2 3/2 

5 1/2 3/2 3/2 1/2 0 

The path traced out by x-from (1,0,0) to (0,0,1) to (0,1/2,3/2) -is sketched 
in Figure 1. 

For the long form, the initial array for the problem is 

Xl X2 X3 VI V2 V3 u 1 4 4 4 4 4 W 

1-1 1 0 00 0 0 00 O 0 00 0 1 I1 
1 0 0 -1 0 0 1 1 1 0 0 -1 0 0 0 0 
0 1 0 0 -1 0 -1 0 0 1 0 0-1 0 0 =0 
0 0 1 0 0-1 1 -2 0 0 1 0 0-1 0 =0 

The sequences of values are: 

Basis Xl X2 X3 VI V2 V3 U y 4 4 3 4 Z3 W 

0 00 0 1 

1 0 0 0 1 short 
2 0 0 0 1 [form 
3 0 0 0 1 J 
4 1/2 1/2 -1/2 1/2 

5 1/2 1/2 1/2 -1/2 

6 1 1/3 -1/3 1/3 

7 1 1/2 0 1/2 

8 t 1+t 1/2+2t t 1/2+t 
_s_ 

x- (0,1,1) 

The x-parts of these solutions are traced out in Figure 2. 
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For example, the solution of the problem for A - 1/4 is given by (21) as 
an interpolation between the Basis 5 and Basis 6 solutions as follows: 

x 1/4 - 1/3 x2 + 
0- 1/4 x3 = 1/4x2 + 3/4x3 = (1/8,0,7/8). 

0 -1/3 0 -1/3 

The solution here for A = 1 is given directly from Basis 8 (cf. formula 22) 
for t 1/2 as (0,1/2,3/2), the same answer the short form gave. 

5. PROOFS 

The burden of this Section is to prove the statements regarding the two 
terminations of the recursions of Section 3. 

The initiation of the process (v - 0) and the side condition (16) on the 
choice of x's and v's entering the basis have been designed to ensure that at 
each stage of both recursions we have v'x - 0. It remains to be seen what 
occurs when, in either recursion, it is not possible to continue the indicated 
minimization under the side conditions. The theorem below gives what is 
needed for an analysis of these conditions. 

THEOREM 3. Let A, b, C be as in Section 1; let the matrix Q be n by n', q 
be 1 by n', and g be n by 1. Let x > 0, v > O s'tch that v'x O Obe given. Denote 
by xx those components of x which are positive, and by vx the corresponding 
components o/ v (note Vx = 0); denote by vv the positive components of v, and 
by xv the corresponding components of x (note x, 0). 

I/ the linear lorm 

(23) qw 

is minimal under the linear constraints 

(24) xv-? 

and 

(25) ~Ax =b, 

(25) Cx-Iv+A'u+Qw =g, 

then there exists an r such that rC = 0, Ar' 0, and qw z rg. 

PROOF. (Note that (24) is precisely the linear expression of the basis re- 
striction side condition (18).) The proof depends upon the detailed structure 
of the quantities x, v, u, w which yield the minimum of qw. We have already 
distinguished in the vectors x, v the corresponding parts x$ > 0, V$ = 0, and 
the corresponding parts xv = 0, v, > 0. There remain the corresponding 
parts x6, v., which, although not positive, are not required to vanish by the 
constraints. In (26), below, the matrix for the constraints (25) is partitioned 
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in accordance with this partioning of x and v, first vertically, then horizon- 
tally in the naturally corresponding manner (such that --I partitions into 
diagonal matrices). 

Xx>O x>O xv=O Vx=O v6>O vv>O u w>O 

s Ax A8 AV 0 0 0 0 0 b 

X x C C/ C~ -Ix 0 0 A=gx 
(26) 

8 x X 

rz | C,,~ Cx Cj 0 - 0 Aj Q =gA 

rv Cxv Ca Cvv 0 0 Iv Av =gv 

11 A\ A\ 11 11 A\ 
0 0 0 0 0 0 0 q 

According to the hypothesis of the theorem, the values of the variables above 
this array minimize the linear form whose coefficients appear below the 
array. The columns corresponding to xv- 0, Vx = 0 can be disregarded, 
since we insist that these variables vanish. 

At the left of the array stand the variables of the linear programming 
problem dual to ours [8]. The coefficients of the linear form for the dual 
problem are those on the right of the array; the constraints for the dual 
problem, read vertically from the matrix, have their constant coefficients on 
the bottom of the array. The dual variables are unrestricted in sign since 
they are connected with equation constraints. The existence of these varia- 
bles, satisfying the relations indicated below the matrix, is the consequence 
of the duality theorem for linear programming [8], as is the equality of the 
two objective functions. (Note particularly that where a variable turns out 
to be non-zero, as in xx, or is never restricted, as in u, the corresponding 
dual relation is an equality.) 

In detail, these relations are: 

(a) sAx + rx Cxx + r6Cx8 + rVCx - 0 

(b) sA, + rx C,+ C + C88+rV Cv < 0 

(c) - -- r < 0 

(27) (d) 0v Iv - 
(e) rx A' + r A' + rv A'v z0 

(f) [rxr8rv] Q ? q 

and 

(g) qw =sb + rg, 

which expresses the equality of the objectives. 
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Relations (d) and (c) yield at once r= 0, r8 > 0. Dropping therefore 
rv, multiplying (a) on the right by rx and (b) by r', we have 

sA r' +rC r' +r,6C r' =O0, x x x xx x a1 xA 

sA6r; + rxC,6r, + r6C6rr < 0, 

which are added to form 

s[A rx + A6r,] + [rxr,] [Cxx c[ X [r r ]' < 0. 

By (e), however, the first term here vanishes; and the matrix of C's in the 
second term, being a principal submatrix of a positive semidefinite matrix 
is itself positive semidefinite, so that the second term is in fact zero; whence, 
by Lemma 1, 

cs C'x CX ] (rr) -0, 

or 
C xrj+C 6r, 0, 

(28) C', r' + C6r/ - 0. 

Equation (a) then yields just 
sAx= 0, 

whence we have 

sb = s[Axxx + A,x, + AVxV] sAxxx- 0, 

which, by (g), proves the theorem, letting r [rx r8 rv] and noting (27e) 
and (28). 

This theorem can be applied to the short form computation by letting 

(29) Q -E, q (1, . 1), and g- -AP'. 

When, in the course of minimizing Zk, it is not possible to reduce it under 
the basis restrictions, the hypothesis of Theorem 3 will be satisfied, and we 
will have E Z qw rg 

with rC- 0. Thus, either in the case that C is positive definite-when ne- 
cessarily r 0-or in the case that A. 0 we have z2Zk 0, so that the 
hypothesis of Theorem 2 is satisfied, and the terminal x solves the quadratic 
problem. 

Having reduced Z to zero, we maintain this in the long form and proceed 
to minimize -A. Theorem 3 is applied here by letting 

(30) Q= p', q = -1, g = 0. 
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If the long form recursion ends in a finite minimum for -i, the hypo- 
thesis of Theorem 3 is satisfied, whence we conclude 

-2 qw -rg 0; 

-i has in fact not been reduced. Two cases are thus possible: (i) no step 
which lowers -)i can be taken; and (ii) i can be reduced to -oo. 

Case (i): Here we must make use of the achievable nondegeneracy of the 
constraints (26) for this system, which asserts that m + n of the variables 
in any solution are positive. Since A =0 , m of these are in u, and the re- 
maining n in xx and vt,; x., v. are empty. Since Ar' 0, Cr' 0 O, and, from 
(27f) pr' < -1, we have that for any t 

(31) A(x + tr') b, 
C(x + tr') -v + A'u 0. 

It follows from nondegeneracy that r > 0; for otherwise we should have, for 
some t > 0, x + tr' satisfying (25) but vanishing in one more component 
than does x. Thus x + tr' is feasible for all t > 0, and 

/(A,x + tr') =Apx + 1/2x'Cx + Apr't. 

Since pr' < -1, fI(,x + tr') -> oo as t -> oo for any)A > 0, and the desired 
minimum is -OO. 

Case (ii): The values of A are not bounded. Since only a finite number of 
bases are available, a sequence of basic solutions (xi,vi,ii) i -1, . .,g 
will be produced, and finally (x9+l,v9+l,u9+l) such that (xg + tx9+1, 

v9 + tv9+1,"g + tU+1,,u9 + t) is a solution for all t > 0. Due to the basis 
restriction (16), we will have these relations: 

(32) 0 v?xi vixi+X _ vi+lxi Vi+lxi+l, it i < (i- 1.g) 

Given now that ,ti < A < ?u +, the point 

,U1 - 
A 

/ t , ri1RS + A 8'xi+1, 

being a convex combination of xi and xi+l, is feasible; and it is easy to check 
that, letting v and u be respectively the same combinations of vi, v'+' and , 
Ui+l, the resulting triple satisfies Theorem 3, so that x yields the desired 
minimum. If on the other hand A > ,ug, the triple xg + (A -,g)xg+', 
v + (A - g)vg+l, ug + (A jug) u9+1 satisfies Theorem 3, so that xg + 
(A -ug) xg+1 is the answer. 

6. COMPUTATION 

Although we have presented the procedure above only for the case of 
constraints of the form Ax = b, x > 0, relying on the fact that all types of 
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linear inequality constraints may be written in this form, in practical com- 
putations there are several devices which will serve to reduce the magnitude 
of the problem when other types of constraints are given. We shall give these 
below without proofs of their effectiveness; such proofs follow closely along 
the line of those of Section 5. 

Let the constraints of the stated problem be 

All xi + A12 X2 - bi, 
A21 Xl + A22 X2 + Y2 = b2, 
A31 xi + A32 X2 -y3 b3, 

Xl, Y2, Y3 > ?. 

(The second and third lines of (33) are the usual formulations for the con- 
straints < and >.) The new system of linear constraints (corresponding to 
(9) of Section 2) will be 

X1>0 X2 Y2>O0 y3>0 V1>0 ul U2>0 U3>0 A 

-All A12 =bl 
A21 A22 I =b2 

(34) A31 A32 -I =b3 

-I Ail A1 A31 pl =0 
C A~~~~~2 A~~~~~2 A2 p/ =0 Ai2 J22 J32 P2 - 

The algorithm proceeds as before, with rule (16) of Section 3 strengthened to: 

If (Xl) k is in the basis, do not admit (Vi) k, and vice versa; 
(35) if (y2) k is in the basis, do not admit (U2) k, and vice versa; 

if (y3) k is in the basis, do not admit (u3) k, and vice versa. 

In this formulation, it is seen that the number of equations in the stated 
problem is augmented only by the number of non-slack variables in the 
problem. A further reduction is evidently possible: since the variables 
X2 and ul are not restricted, they could be algebraically eliminated 
from the system, along with an equal number of equations in which 
they have nonzero coefficients (this reduction could also have been 
performed with the u of (9)). The eliminations would leave a number of 
equations equal to the total number of components of xi, Y2, and y3 for this 
generalized problem, and just the number, n, of components of x in the 
simpler problem-in any case, the number of inequality constraints in the 
original problem. (This might seem odd if, for example, there were no in- 
equality constraints in the stated problem; but then the operations of elimi- 
nating the unrestricted variables-all the variables-would be precisely 
those of solving for x and u in the classical Lagrange Multiplier solution.) 
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While the elimination is simple to perform, we have not employed it in 
calculation, for the reason that it is not likely, in problems whose matrices 
have many zero entries, to decrease very greatly the number of nonzero 
entries; and it is this latter number which, to a considerable extent, deter- 
mines the speed of computation in sophisticated versions of the simplex 
method. This must be kept in mind when estimating the relative efficiencies 
of procedures of this sort; in this procedure, the bulk of the data consists 
of the entries of C and twice those of A. In the large problem described below, 
these data were only 1660 in number, although the resulting linear program- 
ming problem had 204 equations and 714 variables. 

A revision of the SHARE Linear Programming code for the IBM 704 
computer has been made for the solution of quadratic programming problems. 
This code can be used for either the short form or the long form as described 
above, or in an alternate version which first gets the solution to the linear 
problem obtained by dropping the quadratic form, and then proceeds to 
obtain the solutions for all A > 0. The code has been used on a variety of 
problems, the largest of which, concerned with the allocation of a strategic 
material, had 90 constraints and 192 variables, 78 of which were "slacks." 
This problem required 359 simplex method changes-of-basis during 230 mi- 
nutes for the complete long form solution. 
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