LECTURE 3: OPTIMALITY CONDITIONS

1. First order and second order information
2. Necessary and sufficient conditions of optimality
3. Convex functions
General setting

• General form nonlinear programming problem

\[
\begin{align*}
\text{Min} & \quad f(x) \\
\text{s. t.} & \quad x \in S \subseteq E^n \\
\text{where } S \text{ can be a "simple" set} \\
\text{or } & \quad S \triangleq \{ x \in E^n \mid g_i(x) \leq 0, \ i = 1, \ldots, m; \\
& \quad \quad h_j(x) = 0, \ j = 1, \ldots, n; \\
& \quad \quad x \in X \}\text{ }
\end{align*}
\]
Local minimum

Definition A point $x^* \in S$ is said to be a relative minimum point or a local minimum point of f over S if there is an $\epsilon > 0$ such that $f(x) \geq f(x^*)$ for all $x \in S \cap N(x^*, \epsilon)$, where $N(x^*, \epsilon)$ is the neighborhood of x^* of radius ϵ. If $f(x) > f(x^*)$ for all $x \in S \cap N(x^*, \epsilon)$ and $x \neq x^*$, then x^* is said to be a strictly relative minimum point of f over S.
Global minimum

Definition A point $x^* \in S$ is said to be a global minimum point of f over S if $f(x) \geq f(x^*)$ for all $x \in S$. If $f(x) > f(x^*)$ for all $x \in S, x \neq x^*$, then x^* is said to be a strictly global minimum point of f over S.
Comments

• We always intend to seek a global minimum when formulating an optimization problem.

• In most situations, optimization theory and methodologies only enable us to locate local minimums.

• Global optimality can be achieved when certain convexity conditions are imposed.
A general iterative scheme

• A general scheme of an iterative solution procedure:

Step 1: Start from a feasible solution x in S.

Step 2: Check if the current solution is optimal. If the answer is Yes, stop. If the answer is No, continue.

Step 3: Move to a better feasible solution and return to Step 2.
What are the feasible moves that lead to a better solution?

• Feasible direction
 - Along any given direction, the objective function can be regarded as a function of a single variable.

 - Given $x \in S \subset E^n$, a vector $d \in E^n$ is a feasible direction at x if there is an $\bar{\alpha} > 0$ such that $x + \alpha d \in S$ for all α, $0 \leq \alpha \leq \bar{\alpha}$.

 - A feasible direction is a good direction, if the objective function is reduced along the direction.
How do we know we have attained a minimum solution?

- **First order necessary condition**

- **Proposition.** Let S be a subset of E^n and let $f \in C^1$ be a function on S. If x^* is a relative minimum point of f over S, then for any $d \in E^n$ that is a feasible direction at x^*, we have $\nabla f(x^*)d \geq 0$.

- **Corollary (Unconstrained case).** Let S be a subset of E^n and let $f \in C^1$ be a function on S. If x^* is a relative minimum point of f over S and if x^* is an interior point of S, then $\nabla f(x^*) = 0$.
Example 1

Example: Constrained problem:

\[
\begin{align*}
\min & \quad f(x_1, x_2) = x_1^2 - x_1 + x_2 + x_1 x_2 \\
\text{s. t.} & \quad x_1, x_2 \geq 0
\end{align*}
\]

Check if \(x^* = [1/2, 0] \) satisfies the first-order necessary condition or not.

\[
\nabla f(x) \bigg|_{x^*} = [2x_1 - 1 + x_2, 1 + x_1] \bigg|_{x_1=1/2, x_2=0} = [0, 3/2]
\]

\(\Rightarrow \nabla f(x^*)d \geq 0 \) for all \(d \) with \(d_2 \geq 0 \) (feasible direction at \(x^* \)).
Example 2

Example: Unconstrained problem:

\[
\min f(x_1, x_2) = x_1^2 - x_1 x_2 + x_2^2 - 3x_2
\]

Global minimum is known at \(x_1 = 1, x_2 = 2 \).

At this point,

\[
\nabla f(x) = [2x_1 - x_2, -x_1 + 2x_2 - 3]
\]

\[
= [0, 0]
\]
Comments

• The necessary conditions in the pure unconstrained case lead to a system of n equations in n unknowns.

• Is the condition a sufficient condition? Why?

• How about the condition of

$$\nabla f(x^*) d > 0?$$
Proof of the proposition

If there exists a feasible direction $d \in E^n$ at x^* with $\nabla f(x^*)d < 0$, then there exists $\bar{\alpha} > 0$ such that $x(\alpha) = x^* + \alpha d \in S$ with $0 < \alpha < \bar{\alpha}$ and

$$f(x(\alpha)) = f(x^*) + \nabla f(x^*)(x(\alpha) - x^*) + O(\alpha^2)$$
$$= f(x^*) + \alpha \nabla f(x^*)d + O(\alpha^2)$$
$$< f(x^*), \text{ if } \alpha \text{ is sufficiently small.}$$

This contradicts the fact that x^* is a local minimum point of f over S.
Corollary – Variational Inequalities

- **Proposition:** Let $S \subset E^n$ be convex and $f : E^n \to R$ be $C^1(S)$. If x^* is a relative minimum point of f over S, then x^* is a solution of the following variational inequality problem:

$$\text{Find } x \in S$$

$$(VI) \quad \text{s. t. } \langle x' - x, \nabla f(x) \rangle \geq 0, \quad \forall x' \in S.$$
Second order conditions

Proposition (Second-order necessary conditions). Let S be a subset of E^n and let $f \in C^2$ be a function on S. If x^* is a relative minimum point of f over S, then for any $d \in E^n$ that is a feasible direction at x^*, we have
\begin{enumerate}
 \item $\nabla f(x^*)d \geq 0.$
 \item if $\nabla f(x^*)d = 0$, then $d^T \nabla^2 f(x^*)d \geq 0$.
\end{enumerate}

Proof:
\begin{align*}
f(x(\alpha)) &= f(x^*) + \frac{1}{2} (x(\alpha) - x^*)^T \nabla^2 f(x^*)(x(\alpha) - x^*) + O(\alpha^3) \\
&= f(x^*) + \frac{1}{2} \alpha^2 d^T \nabla^2 f(x^*)d + O(\alpha^3)
\end{align*}
Example 3

Example: Constrained problem:

\[
\begin{align*}
\min & \quad f(x_1, x_2) = x_1^2 - x_1 + x_2 + x_1x_2 \\
\text{s. t.} & \quad x_1, x_2 \geq 0
\end{align*}
\]

Check if \(x^* = [1/2, 0]\) satisfies the second-order necessary condition or not.

\[\nabla f(x) \mid_{x^*} = [0, 3/2], \text{ since } \nabla f(x^*)d = 3/2d_2 = 0\]

\[\Rightarrow d_2 = 0\]

\[\Rightarrow d^T \nabla^2 f(x^*)d = 2d_1^2 \geq 0\]
Second order necessary condition

- Proposition (Second-order necessary conditions – unconstrained case). Let \(x^* \) be an interior point of the set \(S \), and suppose \(x^* \) is a relative minimum point of \(f \in C^2 \). Then

 (i) \(\nabla f(x^*) = 0 \).

 (ii) \(F(x^*) \) is positive semidefinite.
Example 4

Example: Unconstrained problem:

\[\min f(x_1, x_2) = x_1^2 - x_1 x_2 + x_2^2 - 3x_2 \]

Global minimum is known at \(x_1 = 1, x_2 = 2 \).

At this point,

\[\nabla f(x) = [2x_1 - x_2, -x_1 + 2x_2 - 3] \]

\[= [0, 0] \]

and \(F(x) \) is positive definite.
Example 5

Example: Constrained problem:

\[
\begin{align*}
\text{min} & \quad f(x_1, x_2) = x_1^3 - x_1^2 x_2 + 2x_2^2 \\
\text{s. t.} & \quad x_1, x_2 \geq 0
\end{align*}
\]

\(x^* = [6, 9]\) is a solution to the first-order necessary condition:

\[
\nabla f(x) \bigg|_{x=6} = [3x_1^2 - 2x_1 x_2, -x_1^2 + 4x_2] = 0
\]

But, \(x^*\) does not satisfy the second-order necessary condition,

\[
F = \begin{bmatrix} 6x_1 - 2x_2 & -2x_1 \\ -2x_1 & 4 \end{bmatrix} \bigg|_{x^*} = \begin{bmatrix} 18 & -12 \\ -12 & 4 \end{bmatrix}
\]
Second order sufficient condition

- Proposition (Second-order sufficient conditions – unconstrained case). Let \(f \in C^2 \) be a function on a region in which the point \(x^* \) is an interior point. Suppose in addition that
 (i) \(\nabla f(x^*) = 0 \).
 (ii) \(F(x^*) \) is positive definite.

Then \(x^* \) is a strictly relative minimum point of \(f \).
Example 6

Min $f(x) = \frac{1}{4}x^4 - 2x^3 + \frac{11}{2}x^2 - 6x + 1$

s. t. $0 \leq x \leq 4$.
Continue

- First-order information:
 \[f'(x) = x^3 - 6x^2 + 11x - 6 = (x - 1)(x - 2)(x - 3). \]

 \[f'(0) = -6, \quad f'(1) = f'(2) = f'(3) = 0, \quad f'(4) = 6. \]

- Second-order information:
 \[f''(x) = 3x^2 - 12x + 11 \]
 \[\Rightarrow f''(1) > 0, \quad f''(2) < 0, \quad f''(3) > 0. \]

By checking the 1st-order necessary conditions, only \(x = 1, \ x = 2 \) and \(x = 3 \) are satisfied.

By checking the 2nd-order necessary conditions, only \(x = 1 \) and \(x = 3 \) are satisfied.

By checking the 2nd-order sufficient conditions, we know \(x^* = 1 \) or \(3 \) with \(f(x^*) = -1.25 \).
Convex functions - definition

- Let $\Omega \subset E^n$ be a convex set and $f : \Omega \to \mathbb{R}$ be a real-valued function. Then f is convex on Ω, if

 $$f(\alpha x^1 + (1 - \alpha)x^2) \leq \alpha f(x^1) + (1 - \alpha)f(x^2)$$

 $\forall x^1, x^2 \in \Omega$ and $\alpha \in [0, 1]$.

 Moreover, f is strictly convex on Ω, if

 $$f(\alpha x^1 + (1 - \alpha)x^2) < \alpha f(x^1) + (1 - \alpha)f(x^2)$$

 $\forall x^1 \neq x^2, \ x^1, x^2 \in \Omega$ and $\alpha \in (0, 1)$.
Concave functions

- $g : \Omega \to R$ is (strictly) concave on Ω, if $f = -g$ is (strictly) convex on Ω.
Let $\Omega \subset \mathbb{E}^n$ and $f : \Omega \rightarrow \mathbb{R}$.

The graph of f is

$$gra(f) \triangleq \{(x, z) \in \mathbb{E}^{n+1} \mid x \in \Omega \text{ and } f(x) = z\}$$

The epigraph of f is

$$epi(f) \triangleq \{(x, z) \in \mathbb{E}^{n+1} \mid x \in \Omega \text{ and } f(x) \leq z\}$$
Set based definition of convex functions

- Definition

 A function $f : \Omega \subset E^n \rightarrow R$ is convex if $epi(f)$ is a convex subset of E^{n+1}.

- **Theorem:**
 For a convex function f, if each point in $gra(f)$ is an extreme point of $epi(f)$, then the function f is strictly convex.
Let $f : \Omega \subset E^n \rightarrow \mathbb{R}$ be convex and $f \in C^1(\Omega)$. For $x^0 \in \Omega$, what's the supporting hyperplane of $\text{epi}(f)$ at $(x^0, f(x^0))$.

\[
\begin{align*}
 a^T y &= b \\
 a &= ? \quad b = ?
\end{align*}
\]
Basic property - 1

- Overestimate by two-point information
Basic property - 2

- **Theorem:**

 Let f be a convex function on a convex set $\Omega \subset E^n$.

 Then

 $$f\left(\sum_{i=1}^{m} \alpha_i x^i\right) \leq \sum_{i=1}^{m} \alpha_i f(x^i)$$

 $\forall x^i \in \Omega, \quad \alpha_i \in [0, 1] \quad and \quad \sum_{i=1}^{m} \alpha_i = 1$

 (Jensen’s inequality)
Basic property - 3

Theorem:

Let $f \in C^1$. Then f is convex on a convex set $\Omega \subset \mathbb{R}^n$ if, and only if,

$$f(y) \geq f(x) + \nabla f(x)(y-x), \quad \forall \, x, y \in \Omega$$

(underestimate by one-point information)
Proof

(⇒) If \(f \) is convex, then for \(x, y \in \Omega \),

\[
 f(\alpha y + (1-\alpha)x) \leq \alpha f(y) + (1-\alpha)f(x), \quad \forall \alpha \in [0, 1]
\]

For \(\alpha \neq 0 \),

\[
 \frac{f(x + \alpha(y - x)) - f(x)}{\alpha} \leq f(y) - f(x)
\]

As \(\alpha \to 0 \), we have

\[
 \nabla f(x)(y - x) \leq f(y) - f(x)
\]
Proof

\((\Leftarrow)\) Assume that

\[f(y) \geq f(x) + \nabla f(x)(y - x), \quad \forall x, y \in \Omega \]

Given \(x^1, x^2 \in \Omega\), and any \(\bar{\alpha} \in [0, 1]\).

Consider \(\bar{x} = \bar{\alpha}x^1 + (1 - \bar{\alpha})x^2\), then

\[f(x^1) \geq f(\bar{x}) + \nabla f(\bar{x})(x^1 - \bar{x}) \]

\[f(x^2) \geq f(\bar{x}) + \nabla f(\bar{x})(x^2 - \bar{x}) \]

Multiplying the first by \(\bar{\alpha}\) and the second by \(1 - \bar{\alpha}\) and adding up, we have

\[\bar{\alpha}f(x^1) + (1 - \bar{\alpha})f(x^2) \geq f(\bar{x}) + \nabla f(\bar{x})(\bar{\alpha}x^1 + (1 - \bar{\alpha})x^2 - \bar{x}) \]

\[= f(\bar{\alpha}x^1 + (1 - \bar{\alpha})x^2) + \nabla f(\bar{x})(0) \]

\[= f(\bar{\alpha}x^1 + (1 - \bar{\alpha})x^2) \]
Basic properties - 4 and 5

- **Theorem:**
 Let $\Omega \subset E^n$ be a convex set, $f_1, f_2 : \Omega \to R$ be convex functions.
 Then
 (i) $f_1 + f_2$ is convex on Ω
 (ii) βf_1 is convex on Ω, $\forall \beta \geq 0$

- **Theorem:**
 Let f be a convex function on a convex set $\Omega \subset E^n$. Then the set
 $I_c \triangleq \{ x \in \Omega \mid f(x) \leq c \}$ is convex, $\forall c \in R$.
Basic property - 6

• **Theorem:**

 Let \(f \in C^2 \) and \(\Omega \subset \mathbb{E}^n \) is convex with \(\text{int}(\Omega) \neq \emptyset \). Then \(f \) is convex on \(\Omega \), if and only if, the Hessian matrix \(F \) is positive semidefinite over \(\Omega \).
Proof

By Taylor’s Theorem,
\[f(y) = f(x) + \nabla f(x)(y - x) \]
\[+ \frac{1}{2}(y - x)^T F(x + \alpha(y - x))(y - x) \]

for some \(\alpha \in [0, 1] \).
Additional properties

- **Theorem:**
 Let $S \subset E^n$ be convex and $f : S \rightarrow R$.
 Then f is (strictly) convex if, and only if,
 \[g(s) \triangleq f(x^0 + sd) \text{ is (strictly) convex on } I \triangleq \{ s \in R \mid x^0 + sd \in S \} \text{ for any given } x^0 \in S \text{ and } d \in E^n. \]

- **Theorem:**
 Let f be (strictly) convex on $S \subset E^n$ and
 $x = My + b$ is an affine transformation from E^m to E^n. Then $g(y) \triangleq f(My + b)$ is
 (strictly) convex on $\{ y \in E^m \mid My + b \in S \}$, if M has full rank.
Additional properties

Theorem:
Let f_j, $j = 1, \ldots, p$, be convex on $S \subset E^n$ and $\alpha_j \geq 0$. Then $f \triangleq \sum_{j=1}^{p} \alpha_j f_j$ is convex on S. In addition, if \exists i such that f_i is strictly convex on S and $\alpha_i > 0$, then $f \triangleq \sum_{j=1}^{p} \alpha_j f_j$ is strictly convex on S.
Additional properties

- **Theorem:**
 Let f_j, $j = 1, 2, \ldots$, be convex on $S \subset E^n$. If $\lim_{j \to \infty} f_j(x)$ exists for each $x \in S$, then $f(x) \triangleq \lim_{j \to \infty} f_j(x)$ is convex on S.

- **Theorem:**
 Let Ω be an index set and $\{f_w \mid w \in \Omega\}$ be a family of convex functions on $S \subset E^n$. Then, $f(x) \triangleq \sup_{w \in \Omega} f_w(x)$ is convex on $\{x \in S \mid \sup_{w \in \Omega} f_w(x) < +\infty\}$. In addition, if Ω is finite and f_w is strictly convex for each $w \in \Omega$, then f is strictly convex on S.
Additional properties

- **Theorem:**
 Let f_1 be convex on $S_1 \subset E^n$ and f_2 be convex and non-decreasing on a set $T \supset f_1(S_1)$. Then the composition function $f_2 \circ f_1 (x) \overset{\Delta}{=} f_2(f_1(x))$ is convex on S_1.

In addition, if f_1 is strictly convex on S_1 and f_2 is increasing, then $f_2 \circ f_1$ is strictly convex on S_1.
Minimization of convex functions

- **Theorem:**
 Let f be a convex function defined on the convex set S. Then any relative minimum of f is a global minimum and the set τ where f achieves its minimum is convex.
(i) If $x^* \in \Omega$ is a local minimum and $\exists \ y \in \Omega$ with $f(y) < f(x^*)$, then

$$f(\alpha y + (1-\alpha)x^*) \leq \alpha f(y) + (1-\alpha)f(x^*) < f(x^*)$$

for $\alpha \in (0, 1)$

This contradicts to the fact that x^* is a local minimum.

(ii) $\tau = \{x \mid f(x) \leq f(x^*), \quad x \in \Omega\}$ is obviously convex.
Sufficient and necessary conditions

- For convex functions, the first order necessary condition is also a sufficient condition.

- **Theorem:**

 Let $f \in C^1$ be convex on a convex set $\Omega \subset E^n$. If $\exists x^* \in \Omega$, s.t.

 $$\nabla f(x^*)(y - x^*) \geq 0, \quad \forall y \in \Omega$$

 then x^* is a global minimum of f over Ω.
Proof: Since

\[f(y) \geq f(x^*) + \nabla f(x^*)(y - x^*) \geq f(x^*), \ \forall \ y \in \Omega, \]

and any \(y \in \Omega \) can be reached from \(x^* \) along

a feasible direction \(y - x^* \).
Example: Check the convexity of the following optimization problem and find its (global) minimum.

\[
\min f(x_1, x_2, x_3) = 4x_1^2 + 3x_2^2 + 5x_3^2 + 6x_1x_2 + x_1x_3 - 3x_1 - 2x_2
\]
Maximization of convex functions

Theorem:

Let f be a convex function defined on the bounded, closed convex set $\Omega \subset E^n$. If f achieves global maximum on Ω, then one maximizer falls in $\text{bdry}(\Omega)$.
Proof

Assume \(x^* \in \Omega \) is a global maximizer of \(f \). If \(x^* \) is not a boundary point of \(\Omega \), then

\[
\exists \ x^1, x^2 \in \ bdry(\Omega)
\]

s.t.

\[
x^* = \alpha x^1 + (1 - \alpha) x^2 \quad \text{for some } \alpha \in (0, 1)
\]

By convexity of \(f \),

\[
f(x^*) \leq \alpha f(x^1) + (1 - \alpha) f(x^2)
\]

\[
\leq \max \{ f(x^1), f(x^2) \}
\]

Therefore either \(x^1 \) or \(x^2 \) is a global maximizer.
Non-differentiable convex functions

• Where is the first order information?
 - subgradient and subdifferential
Subgradient and subdifferential

• Definition

A vector \(y \) is said to be a subgradient of a convex function \(f \) (over a set \(S \)) at a point \(x^0 \) if

\[
f(x) \geq f(x^0) + \langle y, x-x^0 \rangle, \forall x \in S.
\]

• Definition

The set of all subgradients of \(f \) at \(x^0 \) is called the subdifferential of \(f \) at \(x^0 \) and is denoted by

\[
\partial f(x^0) = \{ y \in E^n \mid f(x) \geq f(x^0) + \langle y, x-x^0 \rangle, \forall x \in S \}.
\]
Properties

1. The graph of the affine function
 \[h(x) = f(x^0) + \langle y, x - x^0 \rangle. \]
 is a non-vertical supporting hyperplane to the convex set
 \(\text{epi}(f) \) at the point of \((x^0, f(x^0))\).

2. The subdifferential set \(\partial f(x^0) \) is closed and convex.

3. \(\partial f(x^0) \) can be empty, singleton, or a set with infinitely
 many elements. When it is not empty, \(f \) is said to be
 subdifferentiable at \(x^0 \).

4. \(\nabla f(x^0) \in \partial f(x^0) \) if \(f \) is differentiable at \(x^0 \).
 \[\{\nabla f(x^0)\} = \partial f(x^0) \] if \(f \) is convex and
 differentiable at \(x^0 \in \text{int}(S) \).
Examples

• In \mathbb{R}, $f(x) = |x|$ is subdifferentiable at every point and

$$\partial f(0) = [-1, 1].$$

• In \mathbb{R}^n, the Euclidean norm $f(x) = \|x\|$ is subdifferentiable at every point and $\partial f(0)$ consists of all the vectors y such that

$$\|x\| \geq \langle y, x \rangle$$

for all x. This means the Euclidean unit ball!